Dried aerobic granules for fast startup of aerobic granular sludge reactors: Reactivation and performance

2020 ◽  
Vol 36 ◽  
pp. 101298
Author(s):  
Shun Ogura ◽  
Rania Ahmed Hamza ◽  
Joo Hwa Tay
2012 ◽  
Vol 65 (2) ◽  
pp. 309-316 ◽  
Author(s):  
A. Nor-Anuar ◽  
Z. Ujang ◽  
M. C. M. van Loosdrecht ◽  
M. K. de Kreuk ◽  
G. Olsson

Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL−1 and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.


Author(s):  
Anouk F. Duque ◽  
Vânia S. Bessa ◽  
Udo van Dongen ◽  
Merle K. de Kreuk ◽  
Raquel B. R. Mesquita ◽  
...  

Abstract The presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded. Neither N nor P removal were affected by 50 mg L−1 of 2-FP in the feed stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the amoA gene with an even distribution of species. PAOs, including denitrifying PAO (dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased throughout the 444 days reactor operation. The results demonstrated that the aerobic granules bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.


2013 ◽  
Vol 16 (1) ◽  
pp. 40-48
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

Aerobic granular sludge has attracted extensive interest of researchers since the 90s due to the advantages of aerobic granules such as good settling ability, high biomass accumulation, being resistant to high loads and being less affected by toxic substances. Studies, however, which have mainly been carried out on synthetic wastewater, cannot fully evaluate the actual ability of aerobic granules. Study on aerobic granular sludge was performed in sequencing batch reactors, using seeding sludge taken from anaerobic sludge and tapioca wastewater as a substrates. After 11 weeks of operation, the granules reached the stable diameter of 2- 3 mm at 3.7 kgCOD/m3.day organic loading rate. At high organic loads, in range of 1.6 - 5 kgCOD/m3.day, granules could treat effectively COD, N, P with performance of 93 – 97%; 65 – 79% and 80 – 95%, respectively.


2021 ◽  
pp. 100862
Author(s):  
José Marcos Marques Mourão ◽  
Maurício Guimarães de Oliveira ◽  
Milena Kelly da Silva Almeida ◽  
André Bezerra dos Santos ◽  
Erlon Lopes Pereira

2004 ◽  
Vol 50 (9) ◽  
pp. 155-160 ◽  
Author(s):  
H. Xu ◽  
J.-H. Tay ◽  
S.-K. Foo ◽  
S.-F. Yang ◽  
Y. Liu

This study investigated the adsorption kinetics of dissolved copper(II) and zinc(II) by aerobic granular sludge. Two series of batch experiments were conducted at different initial copper(II), zinc(II) concentrations (Co) and initial granule concentrations (Xo). Results showed that the biosorption kinetics of individual copper(II) and zinc(II) by aerobic granules were closely related to Co and Xo. The maximum biosorption capacity of individual copper(II) and zinc(II) by aerobic granules was 246.1 mg g-1 and 180 mg g-1, respectively. In order to theoretically interpret the results obtained, two kinetic models previously developed for biosorption were employed and compared in this study. It was found that the model proposed by Liu et al. (2003) could fit the experimental data very well, but the second-order model failed to fit the data in some cases. It appears that aerobic granules would be potential biosorbent with high efficiency for the removal of dissolved copper(II) and zinc(II) from wastewater.


2004 ◽  
Vol 50 (10) ◽  
pp. 195-202 ◽  
Author(s):  
B.S. McSwain ◽  
R.L. Irvine ◽  
P.A. Wilderer

Aerobic granular sludge, without the addition of carrier material, has only been reported in one suspended growth system, the Sequencing Batch Reactor (SBR) operated with short fill and settling periods. Recent studies have demonstrated that extracellular polysaccharides increased with the formation of aerobic granules, and that the shear force may stimulate production of these polysaccharides. In the study described herein, two SBRs were operated with the same shear force (air flow rate 275 L h−1) and two different settling times (2 and 10 min). Only the reactor with 2 min settling formed completely granular sludge, although granules were present in both reactors. Community analysis using 16S rRNA PCR products and DGGE showed that the communities diverged quickly after reactor start-up. For samples taken at steady-state, the granular population was more stable and less diverse than the flocculent reactor. EPS extraction of samples using cation exchange resin yielded similar values for aerobic granular sludge and previously reported anaerobic granules. While differences in the protein and TOC content between the flocculent and granular reactors increased appreciably as the sludge became more granular, the protein to polysaccharide ratio was relatively constant. The experiment confirmed previous theories that short settling times in SBRs select for granular sludge. The settling time results in granular sludge having a higher EPS protein content and a less diverse but more stable population.


2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Nik Azimatolakma Awang ◽  
Md. Ghazaly Shaaban

Until now, the development of aerobic granules sludge (AGS) has been extensively reported using sequencing batch reactor (SBR) with reactor height/diameter (H/D) ratio of over 10. This is because the formation process of aerobic granules itself is depending upon the flowing trajectory inside reactor indulge by reactor height and superficial air velocity (SUAV). Thus, this study aims to determine effect of reactor H/D ratio on performance of AGS develop in two SBRS with equal working volume and organic loading rate (OLR). The two SBRs namely as SBR1 and SBR2 had a difference in reactor H/D ratio of 11.3 and 4.4, respectively. At an aeration rate of 4 L/min,  SUAV for SBR1 was two time higher than in SBR2, which were 1.33 cm/s and 0.7 cm/s, respectively. Thus, the SBR2 configuration condition seems unfavorable for development of compact aerobic granules. However, it was found that aerobic granules can be developed in both SBRs at an OLR as low as 0.12 kg CODs/m3 d and up to 0.49 kg CODs/m3 d. Mature aerobic granules were successfully developed after 49 and 89 days of formation, for Batch1 AGS and Batch2 AGS, respectively. At stable conditions, the highest CODs removal and SS effluent for Batch1 AGS and Batch2 AGS were more than 80% and below 26 mg/L, respectively. While effluent performance in both reactors was high, analysis on SVI30 indicated that SBR1 produced more sludge than SBR2. Compare to SBR1, at similar settling time of 15 min, SBR2 provide a short settling distance for biomass which was preferable in case of system breakdown due to shock OLR.


2018 ◽  
Vol 44 ◽  
pp. 00024 ◽  
Author(s):  
Joanna Czarnota ◽  
Adam Masłoń ◽  
Monika Zdeb

Aerobic Granular Sludge (AGS) technology becomes a very competitive method to activated sludge system. Its main advantages include: high energy efficiency and low investment costs. Despite this fact, intensive research on biogranulation optimization are still carried out, both at laboratory and technical scale. In order to intensify the AGS technology, new methods of biogranulation and ways of improving the stability of aerobic granules are sought. So far, several studies have been conducted in this area, with using among others: chemical coagulants, dosage fragments of granules and powdered materials. The aim of this study was to evaluate the impact of powdered keramsite on the feasibility of rapid aerobic granulation in a GSBR reactor with a minimum-optimum organic loading rate (OLR). The research presents an effective way of cultivating stable aerobic granules in a Granular Sequencing Batch Reactor (GSBR) under specific technological parameters.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 5845-5861
Author(s):  
Natalino Perovano Filho ◽  
Ismarley Lage Horta Morais ◽  
Lívia Carneiro Fidélis Silva ◽  
Claudio Mudadu Silva ◽  
João Carlos Teixeira Dias ◽  
...  

Aerobic granules are large, compact microbial aggregates when compared to flocculent sludge, and they can be used in wastewater treatment. The application of aerobic granular sludge in bioreactors for the treatment of industrial effluents is still considered innovative and has been the subject of several recent studies. In the present study, 19 microbial isolates from mesophilic aerobic granules, obtained from a previous study, were evaluated in co-aggregation tests. The extracellular polymeric substances (EPS) produced, such as carbohydrates, proteins, and humic acids, were determined. The aim was to evaluate the relationship between the amount of EPS produced and the contribution of each isolate in the granulation process. The results of EPS production were used to analyze the polysaccharide / protein (PS / PN) ratio. The consortia with an absence of isolates 4, 8, 11, 14, 19, and 25 presented a PS / PN ratio <0.5. These isolates, identified as belonging to the genera Staphylococcus, Agrobacterium, Enterobacter, and Rhodococcus, were considered effective for the production and stability of the mesophilic aerobic granules.


Sign in / Sign up

Export Citation Format

Share Document