Reconsidering clean-in-place criterion for low pressure membrane filtration systems using a model verified by long-term pilot plant operation data

2022 ◽  
Vol 46 ◽  
pp. 102506
Author(s):  
Dongkeon Kim ◽  
Noori Kim ◽  
Jongmin Jeon ◽  
Jihye Kim ◽  
Jaelim Lim ◽  
...  
Author(s):  
Jan Bárta ◽  
Lenka Procházková ◽  
Michaela Škodová ◽  
Kateřina Děcká ◽  
Xenie Popovič ◽  
...  

Based on our long term experience with the operation of a photochemical pilot plant, we propose an UV light-based technology for syntheses of nano-dimensional metal oxides (case study for ZnO,...


2014 ◽  
Vol 53 (25) ◽  
pp. 10335-10342 ◽  
Author(s):  
Marek Inger ◽  
Marcin Wilk ◽  
Magdalena Saramok ◽  
Gabriela Grzybek ◽  
Anna Grodzka ◽  
...  

2010 ◽  
Vol 5 (4) ◽  
Author(s):  
J. L. Manuszak ◽  
M. MacPhee ◽  
S. Liskovich ◽  
L. Feldsher

The City of Baltimore, Maryland is one of many US cities faced with challenges related to increasing potable water demands, diminishing fresh water supplies, and aging infrastructure. To address these challenges, the City recently undertook a $7M study to evaluate water supply and treatment alternatives and develop the conceptual design for a new 120 million gallon per day (MGD) water treatment plant. As part of this study, an innovative raw water management tool was constructed to help model source water availability and predicted water quality based on integration of a new and more challenging surface water supply. A rigorous decision-making approach was then used to screen and select appropriate treatment processes. Short-listed treatment strategies were demonstrated through a year-long pilot study, and process design criteria were collected in order to assess capital and operational costs for the full-scale plant. Ultimately the City chose a treatment scheme that includes low-pressure membrane filtration and post-filter GAC adsorption, allowing for consistent finished water quality irrespective of which raw water supply is being used. The conceptual design includes several progressive concepts, which will: 1) alleviate treatment limitations at the City's existing plants by providing additional pre-clarification facilities at the new plant; and 2) take advantage of site conditions to design and operate the submerged membrane system by gravity-induced siphon, saving the City significant capital and operations and maintenance (O&M) costs. Once completed, the new Fullerton Water Filtration Plant (WFP) will be the largest low-pressure membrane plant in North America, and the largest gravity-siphon design in the world.


1994 ◽  
Vol 29 (10-11) ◽  
pp. 61-67 ◽  
Author(s):  
M. Fruhen ◽  
K. Böcker ◽  
S. Eidens ◽  
D. Haaf ◽  
M. Liebeskind ◽  
...  

The objective of this study is to investigate to what extent the nitrification capacity of a pilot-plant fixed-film reactor changes during extensive periods of nutrient supply deficiency. The examined pilot-plant was an upflow reactor filled with swelling clay of medium grain size (6 to 8 mm). The experiments revealed that the maximum nitrification rate remained practically constant during the first weeks after the onset of unregulated ammonium supply. The capacity declined slowly, dropping to approximately 66% of the initial capacity after about ten weeks. Still ammonium peaks of up to 8 mg/l were readily nitrified throughout the entire period of the experiment. The reduction in nitrification capacity during the observation period did not result from decay processes of biomass but from the reactor becoming blocked and thus hampering transfer processes. It could be observed that the detached organisms attached again further up. This semi-industrial project demonstrated that a plug-flow fixed-film reactor can be used as effective means of tertiary nitrification.


Author(s):  
Seremak Wioletta ◽  
Baszczuk Agnieszka ◽  
Jasiorski Marek ◽  
Gibas Anna ◽  
Winnicki Marcin

AbstractThis work shows that the titanium dioxide coatings obtained by low-pressure cold gas spraying with the use of the sol–gel amorphous TiO2 powder are characterized by photocatalytic activity despite their partial amorphous content. Moreover, the research outcome suggests that the decomposition rate of organic pollutants is enhanced after long-term exposure to moisture. The condensation humidity test is not detrimental to the continuity and integrity of the coating, but the phase composition of coatings changes—with the exposure to water vapor, the portion of the amorphous phase crystallizes into brookite. The mechanism responsible for the conversion of amorphous TiO2 into brookite is attributed to the water-driven dissolution and reprecipitation of TiO6 octahedra. It has been shown that an additional parameter necessary for the stabilization of the brookite is the oxygen depletion of the amorphous structure of titanium dioxide. Considering the results presented in this paper and the advantages of a portable, low-pressure cold spray system for industrial applications, it is expected that TiO2 coatings produced from a sol–gel feedstock powder can be further developed and tested as efficient photocatalysts.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Florian H. H. Brill ◽  
Julia Hambach ◽  
Christian Utpatel ◽  
Diana C. Mogrovejo ◽  
Henrik Gabriel ◽  
...  

Abstract Background Long-term use of urethral catheters is associated with high risk of urinary tract infection (UTI) and blockage. Microbial biofilms are a common cause of catheter blockage, reducing their lifetime and significantly increasing morbidity of UTIs. A 0.02% polyhexanide irrigation solution developed for routine mechanical rinsing shows potential for bacterial decolonization of urethral catheters and has the potential to reduce or prevent biofilm formation. Methods Using an in vitro assay with standard market-leading types of catheters artificially contaminated with clinically relevant bacteria, assays were carried out to evaluate the biofilm reduction and prevention potential of a 0.02% polyhexanide solution versus no intervention (standard approach) and irrigation with saline solution (NaCl 0.9%). The efficiency of decolonization was measured through microbial plate count and membrane filtration. Results Irrigation using a 0.02% polyhexanide solution is suitable for the decolonization of a variety of transurethral catheters. The effect observed is significant compared to irrigation with 0.9% saline solution (p = 0.002) or no treatment (p = 0.011). No significant difference was found between irrigation with 0.9% saline solution and no treatment (p = 0.74). Conclusions A 0.02% polyhexanide solution is able to reduce bacterial biofilm from catheters artificially contaminated with clinically relevant bacteria in vitro. The data shows a reduction of the viability of thick bacterial biofilms in a variety of commercially available urinary catheters made from silicone, latex-free silicone, hydrogel-coated silicone and PVC. Further research is required to evaluate the long-term tolerability and efficacy of polyhexanide in clinical practice.


Author(s):  
Andreas Niebel ◽  
Axel Funke ◽  
Cornelius Pfitzer ◽  
Nicolaus Dahmen ◽  
Nicole Weih ◽  
...  

2016 ◽  
Vol 181 ◽  
pp. 762-769 ◽  
Author(s):  
Bruno Santos ◽  
João G. Crespo ◽  
Maria António Santos ◽  
Svetlozar Velizarov

2004 ◽  
Vol 50 (10) ◽  
pp. 89-96 ◽  
Author(s):  
S. Puig ◽  
M.T. Vives ◽  
Ll. Corominas ◽  
M.D. Balaguer ◽  
J. Colprim

One of the problems of nitrogen removal from wastewater when applying sequencing batch reactor (SBR) technology, is the specific use of organic matter for denitrification purposes. Since easily biodegradable organic matter is rapidly consumed under aerobic or anoxic conditions (i.e. aerobic oxidation or anoxic denitrification, respectively), it is an important factor to consider when scaling up SBRs from the laboratory to real plant operation. In this paper, we present the results obtained in relation to scaling up reactors from lab-scale to pilot-plant scale, treating real wastewater from two different locations: the laboratory and in situ, respectively. In order to make using easily biodegradable organic matter more efficient, the filling phases of SBR cycles were adjusted according to a step-feed strategy composed of 6 anoxic-aerobic events. Feeding only occurred during anoxic phases. The results obtained demonstrated that the methodology may be useful in treating real wastewater with high carbon and nitrogen variations, as it always kept effluent levels lower than the official standards require (effluent total COD lower than 125 mg COD/L and effluent Total Nitrogen lower than 15 mg N/L).


Sign in / Sign up

Export Citation Format

Share Document