Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex

Life Sciences ◽  
2020 ◽  
Vol 263 ◽  
pp. 118545
Author(s):  
V.K.D. Krishnaswamy ◽  
Phaniendra Alugoju ◽  
Latha Periyasamy
2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Andréia Lopes‐de‐Morais ◽  
Rosâgela Mendes‐da‐Silva ◽  
Dioginis Ferreira ◽  
Anderson Pedroza ◽  
Angela Amâncio‐dos‐Santos ◽  
...  

Author(s):  
Dong Jun Park ◽  
Sunmok Ha ◽  
Jin Sil Choi ◽  
Su Hoon Lee ◽  
Jeong-Eun Park ◽  
...  

Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly. It is associated with aging and hair cell death due to oxidative stress-induced mitochondrial dysfunction. Although transgenic mice and long-term cultures for induction of aging have been used to study ARHL, there are presently no ARHL animal models stimulated by intermittent environmental change for aging. In this study, an ARHL animal model was established by inducing continuous oxidative stress to promote short-term aging of cells, determined based on the expression of the hearing loss-induced phenotype and aging related factors in the short term. The incidence of hearing loss was significantly different among the groups subjected to intermittent hypoxic environment, high-fat diet (HFD), and injection with D-galactose. Continuous oxidative stress and HFD were factors that accelerated cellular aging. Increase in UCP2 affected oxidative stress and mitochondrial dysfunction. CDH23, SLC26A4, KCNQ4, Myo7a, and Myo6, which are ARHL-related factors, were modified by oxidative stress in cells of the hearing organ. We found that intermittent hypoxic, HFD, and galactose injection accelerated cellular aging in the short term. Thus, we anticipate that the development of this hearing loss animal model, which reflects intermittent environmental changes, will benefit future research on ARHL.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Anastasia Agapouda ◽  
Veronika Butterweck ◽  
Matthias Hamburger ◽  
Dalene de Beer ◽  
Elizabeth Joubert ◽  
...  

Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions (400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the development of a condition-specific nutraceutical.


Antioxidants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 109 ◽  
Author(s):  
Chisato Fujimoto ◽  
Tatsuya Yamasoba

Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.


1992 ◽  
Vol 14 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Maurizio Mancini ◽  
Carlo Cavallotti ◽  
Raffaele Mancino ◽  
Alberto Ricci ◽  
Francesco Amenta

2020 ◽  
Author(s):  
MYUNG HEE KIM ◽  
Dae Hyun Kim ◽  
Su Geun Yang ◽  
Dae Yu Kim

Abstract Background: Oxidative damage in retinal pigmented epithelium (RPE) cells contributes to the development of age-related macular degeneration, which is among the leading causes of visual loss in elderly people. In the present study, we evaluated the protective role of TPP-Niacin against the hydrogen peroxide (H2O2)-induced oxidative stress to RPE cells. Methods: The cellular viability, lactate dehydrogenase, reactive oxygen species (ROS), and mitochondrial function were determined in the retinal ARPE-19 cells under the treatment with H2O2 or pre-treatment with TPP-Niacin. The expression level of mitochondrial related genes and some transcription factors were assessed using real-time polymerase chain reaction (RT-PCR). Results: TPP-Niacin significantly improved cell viability reduction, reduced ROS generation and increased the antioxidant enzymes in H2O2-treated ARPE-19 cells. Mitochondrial dysfunction from H2O2-induced oxidative stress was also significantly diminished by the TPP-Niacin treatment, reduced generation of ROS, an ameliorated reduction of mitochondrial membrane potential (MMP) and an upregulated mitochondrial associated gene. In addition, TPP-Niacin markedly enhanced the expression of transcription factors (PGC-1α and NRF2) and antioxidant associated genes (especially, HO-1 and NQO-1). Conclusion: We proved the protective effect of TPP-Niacin against H2O2-induced oxidative stress in RPE cells. TPP-Niacin is believed to have played a protective role against mitochondrial dysfunction by up-regulating antioxidant-related genes such as PGC-1α, NRF2, HO-1 and NQO-1 in RPE cells.


Sign in / Sign up

Export Citation Format

Share Document