Absolute timing of Caledonian orogenic wedge assembly, Central Sweden, constrained by Rb–Sr multi-mineral isochron data

Lithos ◽  
2019 ◽  
Vol 344-345 ◽  
pp. 339-359 ◽  
Author(s):  
Hagen Bender ◽  
Johannes Glodny ◽  
Uwe Ring
2017 ◽  
Vol 68 (5) ◽  
pp. 403-418 ◽  
Author(s):  
Ján Soták ◽  
Zuzana Pulišová ◽  
Dušan Plašienka ◽  
Viera Šimonová

Abstract The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4), early Ypresian (Zones P5 - E2) and late Ypresian to early Lutetian (Zones E5 - E9) age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites). The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE), which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW). Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.


2015 ◽  
Vol 663 ◽  
pp. 150-176 ◽  
Author(s):  
Antonio Jabaloy-Sánchez ◽  
Ali Azdimousa ◽  
Guillermo Booth-Rea ◽  
Lahcen Asebriy ◽  
Mercedes Vázquez-Vílchez ◽  
...  
Keyword(s):  

Geology ◽  
2001 ◽  
Vol 29 (8) ◽  
pp. 723 ◽  
Author(s):  
David R. Lageson ◽  
James G. Schmitt ◽  
Brian K. Horton ◽  
Thomas J. Kalakay ◽  
Bradford R. Burton

2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


2017 ◽  
Vol 58 (11) ◽  
pp. 2221-2256 ◽  
Author(s):  
Fabien Deschamps ◽  
Stéphanie Duchêne ◽  
Julia de Sigoyer ◽  
Valérie Bosse ◽  
Mathieu Benoit ◽  
...  
Keyword(s):  
Sw China ◽  

2019 ◽  
Vol 132 (3-4) ◽  
pp. 884-896 ◽  
Author(s):  
Manuel Roda ◽  
Michele Zucali ◽  
Alessandro Regorda ◽  
Maria Iole Spalla

Abstract In the Sesia-Lanzo Zone, Western Alps, the Rocca Canavese Thrust Sheets (RCT) subunit is characterized by a mixture of mantle- and crust-derived lithologies, such as metapelites, metagranitoids, metabasics, and serpentinized mantle slices with sizes ranging from meters to hundreds of meters. Structural and metamorphic history suggests that the RCT rocks experienced a complex evolution. In particular, two different peak conditions were obtained for the metabasics, representing different tectono-metamorphic units (TMUs), namely, D1a under eclogite facies conditions and D1b under lawsonite-blueschist-facies conditions. The two TMUs were coupled during the syn-D2 exhumation stage under epidote-blueschist-facies conditions. The different rocks and metamorphic evolutions and the abundance of serpentinites in the tectonic mixture suggest a possible subduction-related mélange origin for the RCT. To verify whether a subduction-related mélange can record tectono-metamorphic histories similar to that inferred for the RCT, we compare the pressure-temperature evolutions with the results of a 2-D numerical model of ocean-continent subduction with mantle wedge serpentinization. The predictions of the numerical model fully reproduce the two peak conditions (D1a and D1b) and the successive exhumation history of the two TMUs within the subduction wedge. The degree of mixing estimated from field data is consistent with that predicted by the numerical simulation. Finally, the present-day location of the RCT, which marks the boundary between the orogenic wedge (Penninic and Austroalpine domains) and the southern hinterland (Southalpine domain) of the Alpine chain, is reproduced by the model at the end of the exhumation in the subduction wedge. Therefore, the comparison between natural data and the model results confirms the interpretation of the RCT as a subduction-related mélange that occurred during exhumation within a serpentinized mantle wedge.


2020 ◽  
Vol 221 (3) ◽  
pp. 1971-1983
Author(s):  
Lin Chen ◽  
Lijun Liu ◽  
Fabio A Capitanio ◽  
Taras V Gerya ◽  
Yang Li

SUMMARY The Tibetan crust is sliced by several east–west trending suture zones. The role of these suture zones in the evolution of the Himalayan range and Tibetan plateau remains unclear. Here we use 3-D thermomechanical simulations to investigate the role of pre-existing weak zones within the Asian Plate in the formation of orogen and plateau growth during continental collision. Our results show that partitioning of deformation along the convergent margin leads to scraping off of crustal material into an orogenic wedge above the margin and crustal thickening in the retro-continent, eventually forming a large orogenic plateau in front of the indenter. Pre-existing weak zone(s) within the retro-continent is reactivated at the early stage of convergence, and facilitates the northward propagation of strain and widening of the orogenic plateau. The northernmost weak zone sets the northern limit of the Tibetan plateau. Our models also show rheological weakening of the congested buoyant crust within the collisional zone drives wedge-type exhumation of deeply buried crust at the southern flank of the plateau, which may explain the formation of the Greater Himalayan Sequence.


Sign in / Sign up

Export Citation Format

Share Document