Effects of concentrate supplementation strategies during the transition period and milking frequency in early lactation on seasonal winter-calving organic dairy cows

2021 ◽  
pp. 104595
Author(s):  
Andreas Steinwidder ◽  
Hannes Rohrer ◽  
Rupert Pfister ◽  
Markus Gallnböck ◽  
Leopold Podstatzky ◽  
...  
2018 ◽  
Vol 12 (10) ◽  
pp. 894-903
Author(s):  
Marina Žekić-Stošić ◽  
Zdenko Kanački ◽  
Dragica Stojanović ◽  
Dejan Bugarski ◽  
Miodrag Lazarević ◽  
...  

Introduction: Hormonal and metabolic changes, as well as energy imbalance, can affect health, production and reproductive performance of dairy cows. In the present study, we evaluated phagocytosis and respiratory burst neutrophil activity during the transition period and early lactation and compared it with biochemical and hematological parameters in dairy cows. Methodology: Simmental cows (n = 21) were enrolled in the study. Whole blood samples were collected weekly from 3 weeks pre- calving until 6 weeks post calving. Basic metabolic and blood parameters were assessed by routine laboratory analyses, while neutrophil functions were analyzed by commercial test kits. Results: Optimal neutrophil response was observed pre and post calving. The highest value was recorded in the 6th week after calving (89.54 ± 7.61%) and being significantly higher (p < 0.01) as compared to values recorded at two and one week before and one week after calving. The percentage of activated neutrophils was high during the entire study period: from 70.80 ± 5.22% at the beginning of the study to 89.54 ± 7.61% at the end of the study. During the study period, production of Reactive Oxidative Species by neutrophils was positively correlated with β-hydroxybutyrat and non-esterified fatty acids values (0.454** and 0.423**, respectively) and calcium levels (0.164* and 0.212**, respectively). Conclusions: The most prominent changes in all parameters had no influence on phagocytic and respiratory burst activity of neutrophils. Neutrophil function is preserved at the optimal level during the transition period and early lactation in Simmental cows.


2009 ◽  
Vol 89 (3) ◽  
pp. 383-392 ◽  
Author(s):  
D E Santschi ◽  
H -R Wettstein ◽  
F Leiber ◽  
A.-K. M Witschi ◽  
M Kreuzer

The effects of precalving fat sources on fatty acid (FA) profile of colostrum and milk and on metabolic parameters in early lactation were determined. Two fat supplements (target: 21% fat, DM basis) fed at 1.8 kg DM d-1 were compared: Control (C; containing fractionated palm oil rich in 16:0) and Linseed (L; containing extruded linseed, rich in 18:3n-3). Sixteen dry Holstein (n = 7) and Brown Swiss (n = 9) cows were assigned to four groups receiving the supplements from 5 wk pre- to 4 wk post-calving in different sequences: CC, CL, LC and LL. Treatments did not affect metabolic parameters, milk yield or composition. Linseed supplementation increased proportions of 18:0, 18:1, 18:2 and 18:3 in colostrum and milk (except 18:1 for colostrum). The highest n-3 FA proportion was observed in milk of LL cows. For most 16 and 18 FA, a fast response occurred within the first week of lactation for cows that switched treatments over calving. Carry-over to milk of 18:3 and its biohydrogenation products from linseed fed precalving was low. Pre-calving feeding strategies to favour incorporation of these FA into early lactation milk were not successful, but the reasons for this failure remain unclear.Key words: Linseed, omega-3 fatty acids, transition period, milk, colostrum, dairy cows


Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 617-636
Author(s):  
Matteo Mezzetti ◽  
Luca Cattaneo ◽  
Matilde Maria Passamonti ◽  
Vincenzo Lopreiato ◽  
Andrea Minuti ◽  
...  

Recent research on the transition period (TP) of dairy cows has highlighted the pivotal role of immune function in affecting the severity of metabolic challenges the animals face when approaching calving. This suggests that the immune system may play a role in the etiology of metabolic diseases occurring in early lactation. Several studies have indicated that the roots of immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks after calving), extending the time frame deemed as “risky” for the development of early lactation disorders at the period around the dry-off. Several distressing events occurring during the TP (i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the likelihood of developing diseases. Based on this background, several operational and nutritional strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level. Furthermore, several prognostic behavioral and physiological indicators could help in identifying subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through specific modulatory treatments. Recent genomic advances in understanding the linkage between metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune system efficiency or resilience against metabolic disorders) could be expected in the future. Despite these encouraging steps forward in understanding the physiological mechanisms driving metabolic responses of dairy cows during their transition to calving, it is evident that these processes still require further investigation, and that the TP—likely extended from dry-off—continues to be “the final frontier” for research in dairy sciences.


2009 ◽  
Vol 2009 ◽  
pp. 157-157
Author(s):  
T Vafa ◽  
A Naserian ◽  
A Heravi Moussavi ◽  
R Valizadeh ◽  
M Danesh Mesgaran

There are too many physiological and nutritional factors which can influence lactation performance of early lactation Holstein dairy cows. Supplemental fat sources are utilized in rations for dairy cows as a common method to increase the energy density of the diet, especially in early lactation (Juchem et al., 2007). The fat sources also have a positive effect on milk fatty acid profile. Canola seed which contains 40% fat is an excellent source of dietary fat high in unsaturated fatty acids and protein for dairy animals. Canola oil contains 51% oleic, 25% linoleic, and 14% linolenic acids. Fish oil contains relatively high concentrations fatty acids of the n-3 family. It seems that feeding a blend of different oils will have more positive productive response than individual usage of them. The aim of this study was to evaluate the effect of feeding diets containing fish oil and canola oil starting from transition period on milk production and composition of early lactating Holstein cows.


1999 ◽  
Vol 1999 ◽  
pp. 21-21 ◽  
Author(s):  
T.W.J. Keady ◽  
C.S. Mayne ◽  
D A Fitzpatrick

The transition period (last four weeks of pregnancy and the first four weeks of lactation) is the most traumatic period in the annual cycle of the dairy cow. It is physiologically and nutritionally stressful, particularly as food intake is reduced, especially in the last few days prior to calving, whilst nutrient demands for foetal growth and initiation of milk synthesis are increased. As the genetic merit of the national herd has increased considerably in the last ten years, improved nutritional management of cows during the transition period may be more important in reducing or preventing the cumulative loss of body condition, particularly in early lactation. The present study was undertaken to evaluate the effect of level of concentrate intake in late gestation on subsequent milk yield and composition.


2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Tatiele Mumbach ◽  
Raquel Fraga e Silva Raimondo ◽  
Claudia Faccio Demarco ◽  
Vanessa Oliveira Freitas ◽  
Rodrigo Chaves Barcellos Grazziotin ◽  
...  

Background: In order to reduce the effects of a negative energy balance, some measures have been taken into account in nutritional management during the transition period. The use of yeast, has been a good alternative used to improve the rumen metabolism and helping the adjustment of the microbiotato the new diet. The aim of the study was to evaluate the effects of supplementing a combination of yeast culture and hydrolyzed yeast on the metabolism of dairy cows during the transition period.Materials, Methods & Results: The experiment was conducted in a semi-extensive system, using 20 Holstein cows, divided equally into a control group (CG) and a supplemented group (SG). The SG received 28 g/animal/day of a combination of yeast culture and hydrolyzed yeast from 20 ± 2 days pre-calving until early lactation (18 ± 3 days). Serum concentrations of non-esterified fatty acids (NEFA), albumin and urea were determined at calving, and for three time points during the early postpartum period and three time points during the early lactation period. Regarding energy metabolism, prepartum concentrations of NEFA were higher than the physiological standard in both groups. However, NEFA, albumin and urea decreased during the early postpartum period in the supplemented animals and could be attributed to the yeast in enhancing ruminal microorganisms’ cellulolytic capacity, increasing fibre digestibility and starch utilization.Discussion: The increased concentration of non-esterified fatty acids (NEFA) due to the mobilization of fat deposits that happens in the transition period, especially in the postpartum period reflects the cow’s adaptation to the negative energy balance (NEB). The lower concentrations of NEFA observed in the present study could be attributed to the effect of the yeast in enhancing the ruminal microorganisms’ cellulolytic capacity. The control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. It was possible to observe a difference in serum albumin and urea between treatments only in the postpartum period. Besides showing no significant effect in BCS on prepartum period, control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Cows with high BCS prepartum had higher plasma NEFA before and after calving. It can be observed in the present study in both groups. However, a positive effect in prevent subclinical disorders might be attributed to YC, since the SG showed low NEFA plasma levels compared to the CG.  Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. There is a negative correlation between BCS and NEFA in the early postpartum period and this information explains the results observed in the present study where BCS declines in the SG are followed by a NEFA increase. This is not so marked in the CG, indicating that SG supplementation can act by improving digestibility. Yeast supplementation promotes higher output energy, enhancing postpartum performance in dairy cows. Yeast supplementation showed benefits in early lactation compared to the prepartum and early postpartum periods, suggesting that supplementation has to have an adaptation period to be effective in protein synthesis. In conclusion, supplementation with a combination of yeast culture and hydrolyzed yeast to cows during the transition period can positively influence the energy and protein metabolism, reducing the collateral effects of negative energy balance.


2020 ◽  
Vol 11 (2) ◽  
pp. 408-420
Author(s):  
Carlos Leyva Orasma ◽  
Jesús Jaime Benitez-Rivas ◽  
Juan Luis Morales Cruz ◽  
Cesar Alberto Meza-Herrera ◽  
Oscar Ángel-García ◽  
...  

The aim was to evaluate if 1-2 propanodiol plus calcium propionate (glycogenic precursor) supplementation during the transition period in high yielding dairy cows reduces metabolic and reproductive dysfunctions during early lactation. Cows (n=202) where divided into two homogeneous groups regarding number of lactations and body condition score. 1) Treated Group (GG; n=112) received 60g/cow/day  15d of a glycogenic precursor during the transition period. 2) Control Group (GC; n = 90) received no treatment. Postpartum levels of BHB (GG= 0.9±0.2 mmol/L vs GC =1.3±0.2 mmol/L; P < 0.05), and NEFA (GG= 0.6 ± 0.1 mEq/L vs GC = 0.8 ± 0.1 mEq/L; P < 0.05) were higher for GC. Likewise, GC-cows had a higher percentage of retained placenta (23% vs. 13%; P ≤ 0.06) subclinical ketosis (GG = 10%, GC = 56%; P < 0.05), and mastitis (GG = 8%, GC = 16%; P < 0.05). Metritis, dystocia, abortions, clinical ketosis, hypocalcemia and ruminal acidosis showed no differences. Administration of a glycogenic precursor during the transition period demonstrated a positive effect upon BHB and NEFA blood levels during early lactation. Also, levels of subclinical ketosis and retained placenta were reduced.


Sign in / Sign up

Export Citation Format

Share Document