Arginine addition in the stationary phase influences the fermentation rate and synthesis of aroma compounds in a synthetic must fermented by three commercial wine strains

LWT ◽  
2015 ◽  
Vol 60 (2) ◽  
pp. 1009-1016 ◽  
Author(s):  
Alicia Gutiérrez ◽  
Rosana Chiva ◽  
José Manuel Guillamón
2003 ◽  
Vol 69 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Eric Rosenfeld ◽  
Bertrand Beauvoit ◽  
Bruno Blondin ◽  
Jean-Michel Salmon

ABSTRACT The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.


1999 ◽  
Vol 65 (1) ◽  
pp. 143-149 ◽  
Author(s):  
F. Remize ◽  
J. L. Roustan ◽  
J. M. Sablayrolles ◽  
P. Barre ◽  
S. Dequin

ABSTRACT Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 produced a larger amount of succinate and acetate, with marked differences in the level of these compounds between industrial and nonindustrial engineered strains. Acetoin and 2,3-butanediol formation was enhanced with significant variation between strains and in relation to the level of glycerol produced. Wine strains overproducing glycerol at moderate levels (12 to 18 g/liter) reduced acetoin almost completely to 2,3-butanediol. A lower biomass concentration was attained byGPD1-overexpressing strains, probably due to high acetaldehyde production during the growth phase. Despite the reduction in cell numbers, complete sugar exhaustion was achieved during fermentation in a sugar-rich medium. Surprisingly, the engineered wine yeast strains exhibited a significant increase in the fermentation rate in the stationary phase, which reduced the time of fermentation.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
D Janež ◽  
D Kantar ◽  
H Prosen ◽  
S Kreft

Author(s):  
Chunye Liu ◽  
Yanqing Miao ◽  
Yihui Guo ◽  
Yinjuan An ◽  
Yunfang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document