Occurrence, Molecular Characterization, and Antimicrobial Susceptibility of Yersinia enterocolitica Isolated from Retail Food Samples in China

LWT ◽  
2021 ◽  
pp. 111876
Author(s):  
Juan Wang ◽  
Ming Liu ◽  
Huixian Wang ◽  
Qingping Wu ◽  
Yu Ding ◽  
...  
Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


2021 ◽  
Vol 9 (6) ◽  
pp. 1148
Author(s):  
Zahie Abboud ◽  
Lucia Galuppo ◽  
Marco Tolone ◽  
Maria Vitale ◽  
Roberto Puleio ◽  
...  

Mastitis is an infectious disease encountered in dairy animals worldwide that is currently a growing concern in Lebanon. This study aimed at investigating the etiology of the main mastitis-causing pathogens in Northern Lebanon, determining their antimicrobial susceptibility profiles, and identifying their antimicrobial resistance (AMR) genes. A total of 101 quarter milk samples were collected from 77 cows and 11 goats presenting symptoms of mastitis on 45 dairy farms. Bacterial identification was carried out through matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility was tested by disc diffusion and broth microdilution methods. Molecular characterization included polymerase chain reaction (PCR) screening for genes encoding extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC among Enterobacterales isolates, and virulence factors among Staphylococcus isolates. Escherichia coli isolates were subjected to phylogenetic typing by a quadruplex PCR method. The most frequently identified species were Streptococcus uberis (19.2%), Streptococcus agalactiae (15.1%), E. coli (12.3%), and Staphylococcus aureus (10.96%). Gram-positive bacteria were resistant to macrolides and tetracycline, whereas gram-negative bacteria displayed resistance to ampicillin and tetracycline. Two ESBL genes, blaTEM (83.3%) and blaOXA (16.7%), and one AmpC beta-lactamase gene, blaCMY-II (16.7%), were detected among six E. coli isolates, which mainly belonged to phylogenetic group B1. Among Staphylococcus spp., the mecA gene was present in three isolates. Furthermore, four isolates contained at least one toxin gene, and all S. aureus isolates carried the ica operon. These findings revealed the alarming risk of AMR in the Lebanese dairy chain and the importance of monitoring antimicrobial usage.


2003 ◽  
Vol 69 (12) ◽  
pp. 7409-7413 ◽  
Author(s):  
F. M. Colles ◽  
K. Jones ◽  
R. M. Harding ◽  
M. C. J. Maiden

ABSTRACT The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.


Food Control ◽  
2016 ◽  
Vol 70 ◽  
pp. 96-102 ◽  
Author(s):  
Xudong Su ◽  
Jianmin Zhang ◽  
Weimin Shi ◽  
Xiaowei Yang ◽  
Yong Li ◽  
...  

1978 ◽  
Vol 13 (5) ◽  
pp. 888-890 ◽  
Author(s):  
M. Raevuori ◽  
S. M. Harvey ◽  
M. J. Pickett ◽  
W. J. Martin

1976 ◽  
Vol 4 (2) ◽  
pp. 137-144
Author(s):  
M L Bissett

This paper reports on the serological and biochemical characteristics of 24 human isolates of Yersinia enterocolitica submitted to the California Department of Health from 1968 through 1975. Nine different serotypes were represented. The majority of strains were serotype O:8 (six strains) and serotype O:5 (five strains). Sources of the isolates included feces (12 cases), blood (3), sputum or throat (3), bile or bowel drainage (2), wounds (2), breast abscess (1), and skin abscess (1). Clinical histories indicated a number of different syndromes. Underlying medical conditions existed in 13 cases. Results of selected biochemical tests and antimicrobial susceptibility tests on the strains indicated grouping compatible with the O serotypes of the organisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Minda Asfaw Geresu ◽  
Behailu Assefa Wayuo ◽  
Gezahegne Mamo Kassa

The status of Salmonella and its antimicrobial susceptibility profile in animal origin food items from different catering establishments in Ethiopia is scarce. Hence, this study aimed to investigate the occurrence and antimicrobial susceptibility profile of Salmonella isolates from animal origin food items in the selected areas of Arsi Zone. One hundred ninety-two animal origin food samples were collected and processed for Salmonella isolation. Isolates were tested for their susceptibility to 13 antimicrobials using Kirby–Bauer disk diffusion assay. An overall prevalence of 9.4% (18/192) Salmonella spp. isolates were recovered from animal origin food samples collected from different catering establishments. Seven (21.9%) of “Dulet,” 4 (12.5%) of “Kitfo,” 3 (9.4%) of “Kurt,” 2 (6.3%) of raw milk, 1 (3.1%) of egg sandwich and 1 (3.1%) of cream cake samples were positive for Salmonella. Catering establishments, protective clothing, source of contamination, manner of hand washing, and money handling were among the putative risk factors that were significantly associated ( p < 0.05 ) with Salmonella spp. occurrence. Ampicillin, nitrofurans, and sulphonamide resistance were significantly associated ( p < 0.05 ) with Salmonella spp. occurrence in the selected food items. Three (16.7%), 5 (27.8%), 5 (27.8%), and 4 (22.2%) of the isolates were resistant to 3, 4, 5, and 6 antibiotics, respectively, whereas only a sole isolate was resistant to two antibiotics (viz. ampicillin and kanamycin). In conclusion, the general sanitary condition of the catering establishments, utensils used, and personnel hygienic practices were not to the recommended standards in the current study. Besides, detection of multidrug-resistant strains of Salmonella in animal origin food items from different catering establishments suggests the need for detailed epidemiological and molecular characterization of the pathogen so as to establish the sources of acquisition of resistant Salmonella strains. Hence, implementation of Salmonella prevention and control strategies from farm production to consumption of animal origin food items are crucial.


Sign in / Sign up

Export Citation Format

Share Document