Oxygen supersaturation mitigates the impact of the regime of contaminated sediment reworking on sea urchin fertilization process

2020 ◽  
Vol 158 ◽  
pp. 104951 ◽  
Author(s):  
Nunzia Limatola ◽  
Iacopo Bertocci ◽  
Jong Tai Chun ◽  
Luigi Musco ◽  
Marco Munari ◽  
...  
2016 ◽  
Vol 112 (1-2) ◽  
pp. 291-302 ◽  
Author(s):  
Yaoyao Zhan ◽  
Wanbin Hu ◽  
Weijie Zhang ◽  
Minbo Liu ◽  
Lizhu Duan ◽  
...  

2018 ◽  
Vol 15 (9) ◽  
pp. 2587-2599 ◽  
Author(s):  
Sebastiaan Mestdagh ◽  
Leila Bagaço ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Bart De Smet ◽  
...  

Abstract. Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater–bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.


2013 ◽  
Vol 92 ◽  
pp. 95-101 ◽  
Author(s):  
Paola Cristina Branco ◽  
João Carlos Shimada Borges ◽  
Marinilce Fagundes Santos ◽  
Bernard Ernesto Jensch Junior ◽  
José Roberto Machado Cunha da Silva

2007 ◽  
Vol 73 (3-4) ◽  
pp. 589-597 ◽  
Author(s):  
Antonio Pais ◽  
Lorenzo A. Chessa ◽  
Simone Serra ◽  
Alberto Ruiu ◽  
Gianni Meloni ◽  
...  

2013 ◽  
Vol 93 (7) ◽  
pp. 1923-1928 ◽  
Author(s):  
Bryan L. Morse ◽  
Heather L. Hunt

Sea urchins can have important ecological effects on benthic communities through their aggregation and feeding behaviour. Urchin movement has been demonstrated to be negatively affected by wave action, but the impact of unidirectional tidal currents on urchin movement has not been investigated. This study examines the effect of unidirectional water velocity on the direction of displacement and movement rate of the green sea urchin, Strongylocentrotus droebachiensis. In laboratory flume experiments there was a clear effect of water currents on the displacement of sea urchins. At speeds ≤30 cm s−1 urchins moved across the current in a downstream direction, but at speeds of ≥36 cm s−1 the urchins switched directions by more than 90° and moved across the current in an upstream direction. There was a significant effect of flow speed on urchin movement speed, with urchin movement speed decreasing as water current speed increased.


2015 ◽  
Vol 73 (3) ◽  
pp. 727-738 ◽  
Author(s):  
Marie Collard ◽  
Samuel P. S. Rastrick ◽  
Piero Calosi ◽  
Yoann Demolder ◽  
Jean Dille ◽  
...  

Abstract Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.


2011 ◽  
Vol 69 (3) ◽  
pp. 460-464 ◽  
Author(s):  
Steve S. Doo ◽  
Symon A. Dworjanyn ◽  
Shawna A. Foo ◽  
Natalie A. Soars ◽  
Maria Byrne

Abstract Doo, S. S., Dworjanyn, S. A., Foo, S. A., Soars, N. A., and Byrne, M. 2012. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. – ICES Journal of Marine Science, 69: 460–464. The effects of near-future ocean acidification/hypercapnia on larval development were investigated in the sea urchin Centrostephanus rodgersii, a habitat-modifying species from eastern Australia. Decreased pH (−0.3 to −0.5 pH units) or increased pCO2 significantly reduced the percentage of normal larvae. Larval growth was negatively impacted with smaller larvae in the pH 7.6/1800 ppm treatments. The impact of acidification on development was similar on days 3 and 5, indicating deleterious effects early in development. On day 3, increased abnormalities in the pH 7.6/1600 ppm treatment were seen in aberrant prism stage larvae and arrested/dead embryos. By day 5, echinoplutei in this treatment had smaller arm rods. Observations of smaller larvae in C. rodgersii have significant implications for this species because larval success may be a potential bottleneck for persistence in a changing ocean.


2017 ◽  
Author(s):  
Sebastiaan Mestdagh ◽  
Leila Bagaço ◽  
Ulrike Braeckman ◽  
Tom Ysebaert ◽  
Bart De Smet ◽  
...  

Abstract. Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna control sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bioirrigation, respectively. After incubation, the macrofauna was extracted, identified and counted, and classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motile animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bioirrigation and bioturbation activity showed increases in the lower sediment deposition regimes, but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motile, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.


Sign in / Sign up

Export Citation Format

Share Document