Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage

2015 ◽  
Vol 67 ◽  
pp. 880-893 ◽  
Author(s):  
S. Wenau ◽  
V. Spiess ◽  
T. Pape ◽  
N. Fekete
2020 ◽  
Vol 641 ◽  
pp. A140
Author(s):  
◽  
B. Benmahi ◽  
T. Cavalié ◽  
M. Dobrijevic ◽  
N. Biver ◽  
...  

Context. The comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, with water vapor (H2O) among them. Aims. With the aid of a photochemical model, H2O can be used as a dynamical tracer in the Jovian stratosphere. In this paper, we aim to constrain the vertical eddy diffusion (Kzz) at levels where H2O is present. Methods. We monitored the H2O disk-averaged emission at 556.936 GHz with the space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain the vertical eddy diffusion in the stratosphere of Jupiter. Results. Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019. We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, that is, from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that even if an allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, which is suggestive of additional loss mechanisms. Conclusions. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would naturally be the next step in this area of study.


2021 ◽  
Author(s):  
Inês Vieira ◽  
Hans Verbeeck ◽  
Félicien Meunier ◽  
Marc Peaucelle ◽  
Lodewijk Lefevre ◽  
...  

<p>Tropospheric ozone is a greenhouse gas, and high tropospheric ozone levels can directly impact plant growth and human health. In the Congo basin, simulations predict high ozone concentrations, induced by high ozone precursor (VOC and NOx) concentrations and high solar irradiation, which trigger the chemical reactions that form ozone. Additionally, biomass burning activities are widespread on the African continent, playing a crucial role in ozone precursor production. How these potentially high ozone levels impact tropical forest primary productivity remains poorly understood, and field-based ozone monitoring is completely lacking from the Congo basin. This study intends to show preliminary results from the first full year of in situ measurements of ozone concentration in the Congo Basin (i.e., Yangambi, Democratic Republic of the Congo). We show the relationships between meteorological variables (temperature, precipitation, radiation, wind direction and speed), fire occurrence (derived from remote sensing products) and ozone concentrations at a new continuous monitoring station in the heart of the Congo Basin. First results show higher daily mean ozone levels (e.g. 43 ppb registered in January 2020) during dry season months (December-February). We identify a strong diurnal cycle, where minimum values of ozone (almost near zero) are registered during night hours, and maximum values (near 100 ppb) are registered during the daytime. We also verify that around 2.5% of the ozone measurements exceeds a toxicity level (potential for ozone to damage vegetation) of 40 ppb. In the longer term, these measurements should improve the accuracy of future model simulations in the Congo Basin and will be used to assess the impact of ozone on the tropical forest’s primary productivity.</p>


Tectonics ◽  
2019 ◽  
Vol 38 (4) ◽  
pp. 1466-1488 ◽  
Author(s):  
Leonardo M. Pichel ◽  
Emma Finch ◽  
Rob L. Gawthorpe

2019 ◽  
Vol 11 (4) ◽  
pp. 1323-1338 ◽  
Author(s):  
Modeste Meliho ◽  
Abdellatif Khattabi ◽  
Guy Jobbins ◽  
Fathallah Sghir

Abstract Located in the mid-west of Morocco, the Tensift watershed shelters the Takerkoust dam, which provides a part of the water used for irrigation of the N'fis agricultural area, which is an important irrigated area of the Tensift watershed. This study deals with the impact of droughts on water inflows to the Takerkoust dam and how the water shortage caused by droughts affects agricultural production in the N'Fis area. The standardized precipitation index (SPI) was used to illustrate the temporal evolution of drought periods. The trend observed on data showed that the Tensift watershed experienced a succession of droughts and humid periods of varying intensities. Periods of drought have negatively affected water inflows to the Takerkoust dam, and therefore the amount of water allocated to agricultural irrigation. Years that experienced droughts showed a restriction of more than 50% of water volume planned for irrigation. During periods of water scarcity, farmers reduce or completely avoid irrigation of annual crops to save water for irrigation of perennial crops. The water shortage for irrigation has led in some cases to a drop of up to 100% of the surface allocated to the production of annual crops.


2015 ◽  
Vol 120 (12) ◽  
pp. 5721-5739 ◽  
Author(s):  
Jean P. Bell ◽  
Adrian M. Tompkins ◽  
Clobite Bouka-Biona ◽  
I. Seidou Sanda

2020 ◽  
Author(s):  
Pauline Collon ◽  
Guillaume Rongier ◽  
Marion Parquer ◽  
Nicolas Clausolles ◽  
Guillaume Caumon

<p>Modeling the subsurface is a complex task because the data scarcity leads to ambiguous interpretations. As a result, subsurface models are prone to many uncertainties, which can be accounted for by stochastically simulating a large set of possible models. These models are constrained by the data (of various resolution and types), but also by geological knowledge and concepts. Integrating the latter in simulation methods emerges as a key point to reduce uncertainties, although it adds another layer of complexity to the modeling process. In this presentation, I focus on two different geological contexts characterized by specific geobody shapes and connectivity: channelized systems and salt tectonics.</p><p>Channelized systems are, indeed, characterized by elongated and sinuous structures, the channels, which evolve through time by continuous lateral and vertical migrations, and abrupt events like avulsion or meander cut-offs. The combination of erosion and deposition processes is an additional source of complexity in the sedimentary records. When considering the 3D reconstruction of channelized systems, honoring data while reproducing the complex spatial architecture of these structures - so their specific connectivity - remains challenging. The various methods we have recently developed can now be combined to achieve such a goal: (i) single channels or channel parts (for avulsion) can be simulated consistently with well-data, probability cubes, or confinement thanks to a method based on Lindenmayer systems; (ii) from a channel path, consistent 3D architectures can be generated with a reverse-time channel migration approach (ChaRMigS) handling the observed abandoned meanders; (iii) to honor well data within this reverse-time reconstruction, the stochastic simulation of abandoned meanders and avulsions offers interesting solutions. The impact of such modelling methodology on connectivity reproduction has been demonstrated using static criteria, and a flow-based evaluation constitutes an obvious next step.</p><p>In the case of salt tectonics, one difficulty comes from the highly convoluted shapes taken by salt bodies, incompatible with the hypothesis of minimal surface classically used in geomodeling methods. To tackle this issue, we have developed a dedicated method to stochastically generate various salt envelopes in a pre-defined uncertainty zone. Simulations of welds, i.e. surfaces (or most often thin volumes) resulting from the removal of salt from a former layer or diapir stage, also allow us to reproduce topological singularities between salt and the surrounding sediments. Welds connect the different salt volumes, which let us recover a more geologically-consistent representation of such complex systems. The present method is still in its early days, and further improvements need to be undertaken to fully integrate the diversity of structures actually observed in the field.</p>


Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1096
Author(s):  
Germain Batsi ◽  
Denis Jean Sonwa ◽  
Lisette Mangaza ◽  
Jérôme Ebuy ◽  
Jean-Marie Kahindo

Cocoa agroforestry has evolved into an accepted natural resource conservation strategy in the tropics. It is regularly proposed as one of the main uses for REDD+ projects (Reducing Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of forests, and enhancement of forest carbon stocks in developing countries) in the Democratic Republic of the Congo. However, few studies have characterized the cocoa agroforestry systems in this country. Hence, this research proposes to determine the impact of distance from Kisangani (the unique city in the landscape) and land-use intensity on the floristic composition of cocoa agroforests in Bengamisa-Yangambi forest landscape in the Congo Basin. The results revealed that species diversity and density of plants associated with cocoa are influenced by the distance from Kisangani (the main city in the landscape and province). Farmers maintain/introduce trees that play one or more of several roles. They may host caterpillars, provide food, medicine, or timber, or deliver other functions such as providing shade to the cocoa tree. Farmers maintain plants with edible products (mainly oil palms) in their agroforests more than other plants. Thus, these agroforests play key roles in conserving the floristic diversity of degraded areas. As cocoa agroforestry has greater potential for production, biodiversity conservation, and environmental protection, it should be used to slow down or even stop deforestation and forest degradation.


2020 ◽  
Vol 101 (3) ◽  
pp. 1847-1869 ◽  
Author(s):  
Ziqi Wang ◽  
Marco Broccardo ◽  
Arnaud Mignan ◽  
Didier Sornette

Abstract With the unfolding of the COVID-19 pandemic, mathematical modelling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long-term predictions were extremely challenging to address. In addition, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modelling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed for describing the evolution of entropy during the COVID-19 pandemic together with the instantaneous reproductive ratio. Then, we introduce and use entropy-based metrics of global transmission to measure the impact and the temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modelled by an equation governing the probability distribution that describes a nonlinear Markov process of a statistically averaged individual, leading to a clear physical interpretation. The time-dependent parameters are formulated by adaptive basis functions, leading to a parsimonious representation. In addition, we provide a full Bayesian inversion scheme for calibration together with a coherent strategy to address data unreliability. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the susceptible–exposed–infected–removed model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 datasets, we discover significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.


Sign in / Sign up

Export Citation Format

Share Document