Impact of meteorological drought on agriculture in the Tensift watershed of Morocco

2019 ◽  
Vol 11 (4) ◽  
pp. 1323-1338 ◽  
Author(s):  
Modeste Meliho ◽  
Abdellatif Khattabi ◽  
Guy Jobbins ◽  
Fathallah Sghir

Abstract Located in the mid-west of Morocco, the Tensift watershed shelters the Takerkoust dam, which provides a part of the water used for irrigation of the N'fis agricultural area, which is an important irrigated area of the Tensift watershed. This study deals with the impact of droughts on water inflows to the Takerkoust dam and how the water shortage caused by droughts affects agricultural production in the N'Fis area. The standardized precipitation index (SPI) was used to illustrate the temporal evolution of drought periods. The trend observed on data showed that the Tensift watershed experienced a succession of droughts and humid periods of varying intensities. Periods of drought have negatively affected water inflows to the Takerkoust dam, and therefore the amount of water allocated to agricultural irrigation. Years that experienced droughts showed a restriction of more than 50% of water volume planned for irrigation. During periods of water scarcity, farmers reduce or completely avoid irrigation of annual crops to save water for irrigation of perennial crops. The water shortage for irrigation has led in some cases to a drop of up to 100% of the surface allocated to the production of annual crops.

2018 ◽  
Vol 373 (1760) ◽  
pp. 20170411 ◽  
Author(s):  
Liana Oighenstein Anderson ◽  
Germano Ribeiro Neto ◽  
Ana Paula Cunha ◽  
Marisa Gesteira Fonseca ◽  
Yhasmin Mendes de Moura ◽  
...  

Extreme droughts have been recurrent in the Amazon over the past decades, causing socio-economic and environmental impacts. Here, we investigate the vulnerability of Amazonian forests, both undisturbed and human-modified, to repeated droughts. We defined vulnerability as a measure of (i) exposure, which is the degree to which these ecosystems were exposed to droughts, and (ii) its sensitivity, measured as the degree to which the drought has affected remote sensing-derived forest greenness. The exposure was calculated by assessing the meteorological drought, using the standardized precipitation index (SPI) and the maximum cumulative water deficit (MCWD), which is related to vegetation water stress, from 1981 to 2016. The sensitivity was assessed based on the enhanced vegetation index anomalies (AEVI), derived from the newly available Moderate Resolution Imaging Spectroradiometer (MODIS)/Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) product, from 2003 to 2016, which is indicative of forest's photosynthetic capacity. We estimated that 46% of the Brazilian Amazon biome was under severe to extreme drought in 2015/2016 as measured by the SPI, compared with 16% and 8% for the 2009/2010 and 2004/2005 droughts, respectively. The most recent drought (2015/2016) affected the largest area since the drought of 1981. Droughts tend to increase the variance of the photosynthetic capacity of Amazonian forests as based on the minimum and maximum AEVI analysis. However, the area showing a reduction in photosynthetic capacity prevails in the signal, reaching more than 400 000 km 2 of forests, four orders of magnitude larger than areas with AEVI enhancement. Moreover, the intensity of the negative AEVI steadily increased from 2005 to 2016. These results indicate that during the analysed period drought impacts were being exacerbated through time. Forests in the twenty-first century are becoming more vulnerable to droughts, with larger areas intensively and negatively responding to water shortage in the region. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2014 ◽  
Vol 17 (3) ◽  
pp. 5-11
Author(s):  
Khoi Nguyen Dao ◽  
Quang Nguyen Xuan Chau

The main objective of this study was to evaluate the impact of climate change on the meteorological drought in the Daklak province. In this study, the meteorological drought was calculated using the Standardized Precipitation Index (SPI).From this result, two scensrios fot the precipitation VA1B and B1 were downscaled, from the outputs of 4 GCMs (General Circulation Model): CGCM3.1 (T63), CM2.0, CM2.1, and HadCM3 using the simple downscaling method (delta change method). The impacts of climate change on the droughts were assessed by comparing the present (1980- 2009) and the future droughts (2010-2039, 2040-2069, and 2070-2099).Results of the study suggested that the future temperature would increase by 0.9-2.8ºC and the future precipitation would decrease by 0.4-4.7% for both A1B and B1 scenarios. Under the future climate scenarios, the frequency and severity of extreme drought would increase. The results obtained in this study could be useful for planning and managing water resources at this region.


2021 ◽  
Vol 325 ◽  
pp. 01017
Author(s):  
Qooi Insanu Putra ◽  
Emilya Nurjani

Gunungkidul Regency is known as an area that often experiences drought. On the other hand, Gunungkidul Regency is also the regency with the highest amount of rice production in the Special Region of Yogyakarta Province. Rainfed paddy farming is the most widely developed type of paddy in Gunungkidul Regency where irrigation needs are determined by rainfall. Decreased rainfall that triggers meteorological drought can disrupt rainfed-based agriculture. This study aims to analyze the distribution of meteorological drought and analyze the impact of meteorological drought on rainfed paddy productivity in Gunungkidul Regency during the period 2001 – 2019. Meteorological drought identification was carried out using the Standardized Precipitation Index (SPI). Results of the SPI classification was mapped using Spline-Tension interpolation for spatial analysis of the distribution of meteorological drought. Spatial analysis and comparison graphs were used to analyze the relationship between drought and rainfed paddy productivity. The widest meteorological drought in Gunungkidul Regency occurred in November 2006. The highest frequency of drought events occurred in Paliyan Sub-district for 50 months while the lowest occurred in Ponjong Sub-district for 30 months. Most sub-districts in Gunungkidul Regency have a positive relationship between meteorological drought. Most of rainfed paddy productivity decreased when El Nino occurred.


2018 ◽  
Vol 37 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Hayat Adjim ◽  
Abdelkader Djedid

AbstractThe dam of Hammam Boughrara is an embankment dam built in a transboundary basin, between Algeria and Morocco; it was type-approved and delivered in 1998. This dam was supposed to solve the lack of drinking water in Oran (Algeria's second largest city) and enhance the agricultural perimeter of the area. It should regulate an annual water volume of 59 million m3. However, the northwest Algeria has experienced a fairly severe drought since the 80s. This article aims to show the impact of this drought on the amount of surface water that can be mobilized by this dam. The rainfall series recorded at four stations, located within the basin of the dam, were examined using the proportional deviation from the average, the running average, the frequency analysis, the Pita’s index and the standardized precipitation index. These methods have shown a significant decrease of rain, starting from the hydrological year 1975/1976. These same approaches were also used to analyse series of flows spread over a longer period. This fact revealed three periods of drought which are 1940–1945, 1955–1967 and the most recent one highlighted by the rainfall series, starts at the year 1975/1976. The regularized water volume of the dam, calculated from the series of flow rates, is around 37 million m3. This value reflects a deficit of 40% of the regularized volume predicted by the designers of the dam.


2009 ◽  
Vol 48 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
Steven M. Quiring

Abstract Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may lead to over- or underestimating true drought severity. Therefore, it is more appropriate to use an objective location-specific method for defining operational drought thresholds.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


2020 ◽  
Vol 33 (9) ◽  
pp. 3635-3661 ◽  
Author(s):  
Jonathan Spinoni ◽  
Paulo Barbosa ◽  
Edoardo Bucchignani ◽  
John Cassano ◽  
Tereza Cavazos ◽  
...  

AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Bradfield Lyon ◽  
Lareef Zubair ◽  
Vidhura Ralapanawe ◽  
Zeenas Yahiya

Abstract In regions of climatic heterogeneity, finescale assessment of drought risk is needed for policy making and drought management, mitigation, and adaptation. The relationship between drought relief payments (a proxy for drought risk) and meteorological drought indicators is examined through a retrospective analysis for Sri Lanka (1960–2000) based on records of district-level drought relief payments and a dense network of 284 rainfall stations. The standardized precipitation index and a percent-of-annual-average index for rainfall accumulated over 3, 6, 9, and 12 months were used, gridded to a spatial resolution of 10 km. An encouraging correspondence was identified between the spatial distribution of meteorological drought occurrence and historical drought relief payments at the district scale. Time series of drought indices averaged roughly over the four main climatic zones of Sri Lanka showed statistically significant (p < 0.01) relationships with the occurrence of drought relief. The 9-month cumulative drought index provided the strongest relationships overall, although 6- and 12-month indicators provided generally similar results. Some cases of appreciable drought without corresponding relief payments could be attributed to fiscal pressures, as during the 1970s. Statistically significant relationships between drought indicators and relief payments point to the potential utility of meteorological drought assessments for disaster risk management. In addition, the study provides an empirical approach to testing which meteorological drought indicators bear a statistically significant relationship to drought relief across a wide range of tropical climates.


Sign in / Sign up

Export Citation Format

Share Document