scholarly journals Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water

2022 ◽  
Vol 174 ◽  
pp. 113228
Author(s):  
Yahya Terzi ◽  
Kenan Gedik ◽  
Ahmet Raif Eryaşar ◽  
Rafet Çağrı Öztürk ◽  
Ahmet Şahin ◽  
...  
2021 ◽  
Author(s):  
Yahya Terzi ◽  
Kenan Gedik ◽  
Ahmet Raif Eryaşar ◽  
Rafet Çağrı Öztürk ◽  
Ahmet Şahin ◽  
...  

2016 ◽  
Vol 1 (3) ◽  
pp. 3-13 ◽  
Author(s):  
N. N. Tereshchenko ◽  
S. B. Gulin ◽  
V. Yu. Proskurnin

The work is devoted to the study of radioecological processes of redistribution of plutonium alpha-radionuclides (239+240Pu) as the main man-maid dose-forming alpha-radionuclides during the period after Chernobyl NPP accident. 239+240Pu are long-lived radioisotopes, the content of which is increasing in natural ecosystems from incident to incident. Radiotoxicity of these radionuclides is high, and we need science-based approaches of assessment and forecast of radioecological condition of the basins being at risk of a radioactive re-contamination, such as the Black Sea as an inland sea located at region close to developed countries using nuclear technologies. The study was performed with modern advanced techniques, the main of them were radiochemical analysis, alpha-spectrometry and radiotracer technologies. As a result of investigation the radiological regularities of plutonium behavior in the Black Sea ecosystem during the post-Chernobyl period were revealed. Quantitative parameters of plutonium migration in the sea were determined: sedimentation rates at different areas of the sea, the 239+240Pu effective half-lives in surface water, the 239+240Pu radiocapacity factor for bottom sediment, the 239+240Pu fluxes, levels of 239+240Pu in the ecosystem components, and the 239+240Pu accumulation factors for biotic and abiotic components. The features of the biogeochemical behavior of plutonium in the Black Sea ecosystem were identified and the conditions and processes causing them were indicated. The increased ability of the Black Sea surface water to self-purification against 239+240Pu, short residence time of plutonium in surface waters, the relatively high rapid of plutonium accumulation in the bottom sediment due to biogeochemical sedimentation of it, the high concentration ability of silt sediment against 239+240Pu and the type of biogeochemical behavior of plutonium in the Black Sea ecosystem has been observed.


2018 ◽  
Vol 17 ◽  
pp. 60-73 ◽  
Author(s):  
Liudmila V. Stelmakh ◽  
Tatiana I. Gorbunova

Based on the research, conducted in the Black Sea during period of time from 2000 to 2011, seasonal dynamic of C:Chl a ratio and its spatial variability in nano- and microphytoplankton of surface water layer (0–0.5 m) had been analyzed. Maximum values of this parameter were observed in summer, and minimum ones – in winter. Intermediate values of C:Chl a were marked in spring and autumn. The main reasons for variability of the ratio between an organic carbon and chlorophyll a are the light, and different size of phytoplankton and its taxonomic composition. In coastal areas of the sea during summer period, when average values of light intensity in the upper mixed layer are above 20 E·m-2·day-1, size and taxonomic composition of phytoplankton provide main influence to C:Chl a ratio.


2021 ◽  
pp. 103513
Author(s):  
Dmitrii A. Kremenchutskii ◽  
Gennady F. Batrakov ◽  
Illarion I. Dovhyi ◽  
Yury A. Sapozhnikov

Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


2013 ◽  
Vol 10 (6) ◽  
pp. 3943-3962 ◽  
Author(s):  
A. Capet ◽  
J.-M. Beckers ◽  
M. Grégoire

Abstract. The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical–biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981–2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS – which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers – and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability of H is explained by the combination of four predictors: the annual riverine nitrate load (N), the sea surface temperature in the month preceding stratification (Ts), the amount of semi-labile organic matter accumulated in the sediments (C) and the sea surface temperature during late summer (Tf). Partial regression indicates that the climatic impact on hypoxia is almost as important as that of eutrophication. Accumulation of organic matter in the sediments introduces an important inertia in the recovery process after eutrophication, with a typical timescale of 9.3 yr. Seasonal fluctuations and the heterogeneous spatial distribution complicate the monitoring of bottom hypoxia, leading to contradictory conclusions when the interpretation is done from different sets of data. In particular, it appears that the recovery reported in the literature after 1995 was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urgent need for a dedicated monitoring effort in the Black Sea NWS focused on the areas and months concerned by recurrent hypoxic events.


2009 ◽  
Vol 6 (2) ◽  
pp. 1895-1911 ◽  
Author(s):  
L. Vandenbulcke ◽  
A. Capet ◽  
J. M. Beckers ◽  
M. Grégoire ◽  
S. Besiktepe

Abstract. In this article, we describe the first operational implementation of the GHER hydrodynamic model. This happened onboard the research vessel "Alliance", in the context of the Turkish Straits System 2008 campaign, which aimed at the real-time characterization of the Marmara Sea and (south-western) Black Sea. The model performed badly at first, mainly because of poor initial conditions. Hence, as the model includes a reduced-rank extended Kalman filter assimilation scheme, after a hindcast where sea surface temperature and temperature and salinity profiles were assimilated, the model yielded realistic forecasts. Furthermore, the time required to run a one-day simulation (about 5 min of simulation, or 10 min with pre-processing and data transfers included) is very limited and thus operational use of the model is possible.


2007 ◽  
Vol 4 (4) ◽  
pp. 2929-2958 ◽  
Author(s):  
I. Skjelvan ◽  
E. Falck ◽  
F. Rey ◽  
S. B. Kringstad

Abstract. Dissolved inorganic carbon (CT) has been collected at Ocean Weather Station M (OWSM) in the Norwegian Sea since 2001. Seasonal variations in CT are confined to the upper 50 m, where the biology is active, and below this layer no clear seasonal signal is seen. From winter to summer the surface CT concentration typical drops from 2140 to about 2040 μmol kg−1, while a deep water CT concentration of about 2163 μmol kg−1 is measured throughout the year. Observations show an annual increase in salinity normalized carbon concentration (nCT) of 1.3±0.7 μmol kg−1 in the surface layer, which is equivalent to a pCO2 increase of 2.6±1.2 μatm yr−1, i.e. larger than the atmospheric increase in this area. Observations also show an annual increase in the deep water nCT of 0.57± 0.24 μmol kg−1, of which about a tenth is due to inflow of old Arctic water with larger amounts of remineralised matter. The remaining part has an anthropogenic origin and sources for this might be Greenland Sea surface water, Iceland Sea surface water, and/or recirculated Atlantic Water. By using an extended multi linear regression method (eMLR) it is verified that anthropogenic carbon has entered the whole water column at OWSM.


2013 ◽  
Vol 9 (4) ◽  
pp. 4553-4598 ◽  
Author(s):  
G. Milzer ◽  
J. Giraudeau ◽  
S. Schmidt ◽  
F. Eynaud ◽  
J. Faust

Abstract. In the present study we investigate dinocyst assemblages in the Trondheimsfjord over the last 25 to 50 yr from three well-dated multi-cores (210Pb and 137Cs) retrieved along the fjord axis. The downcore distribution of the cysts is discussed in view of changes of the key surface water parameters sea-surface temperatures (SSTs) and sea-surface salinities (SSSs) monitored in the fjord, as well as river discharges. We examine the impact of the North Atlantic Oscillation pattern and of waste water supply from the local industry and agriculture on the fjord ecological state and hence dinocyst species diversity. Our results show that dinocyst production and diversity in the fjord is not evidently affected by human-induced eutrophication. Instead the assemblages appear to be mainly controlled by the NAO-related changes in physico-chemical characteristics of the surface mixed layer. Still, discharges of major rivers were modulated, since 1985 by the implementation of hydropower plants which certainly influences the freshwater and nutrient supply into the fjord. The impact, however, is variable according to the local geographical setting, and barely differentiated from natural changes in river run off. We ultimately test the use of the modern analogue technique (MAT) for the reconstruction of winter and summer SSTs and SSSs and annual primary productivity (PP) in this particular fjord setting. The reconstructed data are compared with time-series of SSTs and SSSs measured at 10 m water depth, as well as with mean annual PPs along the Norwegian coast and within Scandinavian fjords. The reconstructions are in general good agreement with the instrumental measurements and observations from other fjords. Major deviations can be addressed to peculiarities in the assemblages linked to the particular fjord setting and the related hydrological structure.


Sign in / Sign up

Export Citation Format

Share Document