Insights into the fatigue cracking of Alloy 690TT subjected to fretting wear under partial slip conditions

2020 ◽  
Vol 159 ◽  
pp. 110040 ◽  
Author(s):  
Long Xin ◽  
Qian Huang ◽  
Yongming Han ◽  
Hongchao Ji ◽  
Yonghao Lu ◽  
...  
2006 ◽  
Vol 321-323 ◽  
pp. 1495-1498 ◽  
Author(s):  
Dong Hyung Lee ◽  
Seok Jin Kwon ◽  
Chan Woo Lee ◽  
Jae Boong Choi ◽  
Young Jin Kim

In this paper the fretting wear of press-fitted specimens under partial slip conditions was simulated using finite element method and numerical analysis based on Archard's equation. An elasto-plastic analysis of contact stresses in a press-fitted shaft in contact with a boss was conducted with finite element method and the amount of microslip and contact pressure due to bending load was estimated. The predicted wear profile of press-fitted specimens at the contact edge was compared with the experimental results. It is found that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact stresses and strain are redistributed.


1997 ◽  
Vol 119 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Z. R. Zhou ◽  
L. Vincent

Fretting-wear and fretting-fatigue loadings can both result in wear (material loss) and in crack nucleation and propagation (fatigue process). This paper deals with cracking induced by small amplitude displacements in the case of aeronautic aluminium alloys. The two sets of fretting maps are introduced: running condition fretting map is composed of partial slip (sticking), mixed fretting and gross sliding regime; material response fretting map is associated with two macro-degradation modes. Crack nucleation and propagation are analysed for every fretting regime. The mixed fretting regime appeared most detrimental with regards to fatigue cracking. Slip amplitude and normal load main effects discussed for fretting wear can be used to justify the fatigue limit decrease often obtained for fretting fatigue experiments.


2014 ◽  
Vol 1025-1026 ◽  
pp. 50-55
Author(s):  
Abdul Latif Mohd Tobi ◽  
M.Y. Ali ◽  
M.H. Zainulabidin ◽  
A.A. Saad

This paper presents finite element modelling of fretting wear under partial slip conditions using combined isotropic-kinematic hardening plasticity model with the emphasized to investigate the cyclic-plasticity behaviour predicted under fretting condition. The model is based on two-dimensional (2D) cylinder-on-flat contact configuration of titanium alloy, Ti-6Al-4V. A number of wear profiles at specific number of wear cycle (6000th, 60000th, 150000th and 300000th) are simulated. Contact pressure, tangential stress, shear stress, equivalent plastic strain, tangential plastic strain and also shear plastic strain are gathered and analysed. It is found that the plastic strain response of the combined isotropic-kinematic hardening plasticity model is slightly higher compare to linear kinematic hardening plasticity model [1].


2007 ◽  
Vol 129 (3) ◽  
pp. 528-535 ◽  
Author(s):  
L. Gallego ◽  
D. Nélias

The paper presents a numerical model to investigate fretting wear either under partial or gross slip conditions. An efficient three-dimensional elastic–static contact model to solve both the normal contact problem and the tangential contact problem is presented. The contact model is validated with analytical solutions for a sphere on flat geometry. A wear law issued from the literature and based on the friction energy is used to simulate surface wear. Numerical friction logs are obtained and the wear rate evolution is found to be highly dependent on the tangential displacement.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2417 ◽  
Author(s):  
Long Xin ◽  
Yongming Han ◽  
Ligong Ling ◽  
Weidong Zhang ◽  
Yonghao Lu ◽  
...  

The evolution of fretting wear behavior and damage mechanism in Alloy 690TT with cycle number was investigated via laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), focus ion beam (FIB), and transmission electron microscopy (TEM). The results showed that the fretting running status underwent a transition from partial slip and mixed stick-slip to final gross slip with the transformation of Ft–D curves from the ellipse to the parallelogram. The coefficient of friction (COF) experienced three drops throughout the fretting process, which indicated the transformation from high-friction wear to low-friction wear. The first drop was due to the transition from two-body to three-body contact. The second and third drops were mainly related to the evolution of the glaze layer from a localized distribution to completely covering the whole contact surface. The competition between fretting induced fatigue cracking (FIF) and fretting induced wear (FIW) ran through the entire fretting wear process. Before the 1.2 × 104th cycle, the fatigue crack growth was faster than wear, and FIF won the competition. As the fretting cycle continued to increase, the wear velocity was obviously faster than that of FIF, which indicated that FIW defeated FIF. The tribologically transformed structure (TTS) participated in the competition between FIF and FIW. The gain boundaries and dislocations in the TTS were a suitable pathway for crack initiation and propagation and oxygen permeation.


2021 ◽  
Vol 8 (3) ◽  
pp. 418-424
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G. Sankara Sekhar Raju

Incompressible 2-D Navier-stokes equations for various values of Reynolds number with and without partial slip conditions are studied numerically. The Lid-Driven cavity (LDC) with uniform driven lid problem is employed with vorticity - Stream function (VSF) approach. The uniform mesh grid is used in finite difference approximation for solving the governing Navier-stokes equations and developed MATLAB code. The numerical method is validated with benchmark results. The present work is focused on the analysis of lid driven cavity flow of incompressible fluid with partial slip conditions (imposed on side walls of the cavity). The fluid flow patterns are studied with wide range of Reynolds number and slip parameters.


Author(s):  
Liangliang Sheng ◽  
Xiangtao Deng ◽  
Hao Li ◽  
Yuxuan Ren ◽  
Guoqing Gou ◽  
...  

In this work, an in-situ XPS analysis test combined self-designed high precision fretting wear tester was carried out to study the fretting wear behavior and the resulting tribo-oxidation of thermal-oxidation film on Ti6Al4V titanium alloy under the varied working atmosphere. The fretting-induced tribo-oxidation under the air and vacuum ([Formula: see text] Pa) environment was analyzed and its response on the resulting fretting wear resistance and damage mechanism was discussed. Results show that the working environment plays a significant role in the formation of tribo-oxidation and then determining the fretting wear resistance. Thermal-oxidation film in the vacuum atmosphere shows a better fretting wear resistance than that in the air atmosphere for all fretting regimes, except for partial slip regime (PSR) where there is an equivalent fretting wear resistance. Compared with the substrate Ti6Al4V titanium alloy, the thermal-oxidation film in the vacuum atmosphere performs a good protection for titanium alloy, especially for slip regime (SR), but not applied for air atmosphere.


Sign in / Sign up

Export Citation Format

Share Document