A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers

2010 ◽  
Vol 122 (2-3) ◽  
pp. 548-555 ◽  
Author(s):  
Jie Liu ◽  
Yuli Tian ◽  
Yujia Chen ◽  
Jieying Liang ◽  
Lifeng Zhang ◽  
...  
2017 ◽  
Vol 24 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Long-Jiang Zhang ◽  
Feng Qiu ◽  
Jin-Guo Wang ◽  
Qi-Chuan Jiang

AbstractThis paper studied the effect of extrusion on the microstructures and tensile properties of 4 vol.% 5 μm SiCp/Al2014 composites fabricated by stir casting. It has been found that extrusion could refine the α-Al grains, increase the distributed homogeneity of SiC particles, decrease the porosity of the composites, and improve the interfacial bonding strength. The tensile properties, especially the ductility, of the fine SiCp/Al2014 composites were significantly improved by extrusion. Compared with the as-cast 4 vol.% 5 μm SiCp/Al2014 composites, the yield strength, ultimate tensile strength, and fracture strain of the extruded composites increased from 242 MPa, 367 MPa, and 3.8% to 304 MPa, 530 MPa, and 11.2%, which were increased by 25.6%, 44.4%, and 195%, respectively.


2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


2022 ◽  
Vol 148 ◽  
pp. 107699
Author(s):  
M.H. Nie ◽  
S. Zhang ◽  
Z.Y. Wang ◽  
H.F. Zhang ◽  
C.H. Zhang ◽  
...  

2006 ◽  
Vol 55 (11) ◽  
pp. 6008
Author(s):  
Zhang Yong-Kang ◽  
Kong De-Jun ◽  
Feng Ai-Xin ◽  
Lu Jin-Zhong ◽  
Ge Tao

Sign in / Sign up

Export Citation Format

Share Document