Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures

2014 ◽  
Vol 53 ◽  
pp. 152-158 ◽  
Author(s):  
Iman Taraghi ◽  
Abdolhossein Fereidoon ◽  
Fathollah Taheri-Behrooz
AIAA Journal ◽  
2006 ◽  
Vol 44 (12) ◽  
pp. 3080-3087 ◽  
Author(s):  
Adam L. Pilchak ◽  
Takashi Uchiyama ◽  
Dahsin Liu

2011 ◽  
Vol 332-334 ◽  
pp. 1691-1694
Author(s):  
Dian Tang Zhang ◽  
Bao Dong Li ◽  
Ying Sun ◽  
Ning Pan

The low-velocity impact response of Ultra-High Molecular Weight Polyethylene (UHMWPE) laminated composites were studied by drop-weight experiments. Laminated composites were fabricated with unidirectional UHMWPE prepreg using hot-pressing process. Laminated composites of size 150mm×100mm were subjected to low-velocity impact loading at three energy levels of 15J, 25J and 35J. It is found that the slops of load-time and energy-time curves increase with increase in the impact energy. However, load-time curve shows that there are some fluctuations before the peak load was reached. Peak load and absorbed energy increase with increasing impact energy. However, time to peak load decreases linearly with increasing impact energy.


2017 ◽  
Vol 21 (4) ◽  
pp. 1481-1519
Author(s):  
A Azizi ◽  
SMR Khalili ◽  
K Malekzadeh Fard

In the present article, dynamic response of a thick sandwich truncated conical shells with a transversely flexible/inflexible core and nanocomposite face sheets subjected to low-velocity impact was studied. The face sheets are reinforced with single-walled carbon nanotubes where the agglomeration effects are considered based on Mori–Tanaka model. A new equivalent three-degree-of-freedom spring-mass-damper model is utilized to describe the contact force between impactor and sandwich truncated conical shells. Based on an improved higher order sandwich panel theory, the equations of motion are derived by Hamilton’s principal incorporating the curvature, in-plane stress of the core and the structural damping effects. Differential quadrature method is applied for obtaining the contact force and displacement histories. After validity of the present study, the effects of the single-walled carbon nanotubes volume fraction, single-walled carbon nanotubes agglomeration, number of the layers of the face sheets, boundary conditions, semi-vertex angle of the cone, impact velocity, and mass of impactor on the low-velocity impact response of the nanocomposite structure are studied in details. Numerical results show that increasing the volume fraction of single-walled carbon nanotubes can reduce the amplitude of the dynamic response of the nanocomposite structure.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


Sign in / Sign up

Export Citation Format

Share Document