Investigation of the fatigue life of pre- and post-drilling hole in dog-bone specimen subjected to laser shot peening

2015 ◽  
Vol 88 ◽  
pp. 106-114 ◽  
Author(s):  
X.Q. Zhang ◽  
L.S. Chen ◽  
S.Z. Li ◽  
S.W. Duan ◽  
Y. Zhou ◽  
...  
2012 ◽  
Vol 217-219 ◽  
pp. 2234-2237 ◽  
Author(s):  
Su Qin Jiang ◽  
Hong Guang Xu

Based on finite element method, the FEA model used for analyzing fatigue properties of sample treated by laser shot peening (LSP) was established. In order to research the influence of material intensity on LSP effect, two kinds of wrought magnesium alloys AZ31B and ZK60 with different intensity were chosen as object, the compressive residual stress and fatigue life after LSP were analyzed. After spring back analysis the elastic strain is released in material inner, the value of compressive residual stress was reduced; after LSP with 3 times, the fatigue life gains of AZ31B and ZK60 were 105% and 163%, respectively. The results show that strengthening effect of high intensity material treated by LSP is better than that of low intensity material.


Applied laser ◽  
2012 ◽  
Vol 32 (5) ◽  
pp. 379-383
Author(s):  
蒋素琴 Jiang Suqin ◽  
徐红光 Xu Hongguang ◽  
吴建华 Wu Jianhua ◽  
裴旭 Pei Xu

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1646-1651 ◽  
Author(s):  
JIANFEI ZHAO ◽  
JIANZHONG ZHOU ◽  
SHU HUANG ◽  
SUQIN JIANG ◽  
YUJIE FAN

Based on theoretical analysis, finite element software ABAQUS and MSC.Fatigue were used to establish the forecasting model of fatigue life for laser shot peening (LSP) process. By using a standard stretch test sample of 6061-T6 aluminium alloy, the residual stress field induced by LSP was analyzed with ABAQUS code firstly, and then the stress field model was imported into MSC.Fatigue code for the crack growth analysis. The residual stress distribution and its effect on crack propagation life induced by LSP are numerical studied, and the fatigue life is predicted. The results show that numerical simulation approach is valuable for analyzing the fatigue crack growth and influence of process parameters on fatigue life.


Applied laser ◽  
2012 ◽  
Vol 32 (5) ◽  
pp. 379-383
Author(s):  
蒋素琴 Jiang Suqin ◽  
徐红光 Xu Hongguang ◽  
吴建华 Wu Jianhua ◽  
裴旭 Pei Xu

2009 ◽  
Vol 626-627 ◽  
pp. 393-398 ◽  
Author(s):  
Su Qing Jiang ◽  
Jian Zhong Zhou ◽  
Yu Jie Fan ◽  
Shu Huang ◽  
J.F. Zhao

Numerical study on fatigue life of ZK60 magnesium alloy plate before and after laser shot peening (LSP) was carried out in this paper. Based on the FEA model, residual stress field induced by LSP was analyzed, the fatigue life and position of weak area were predicted with ABAQUS software and MSC.Fatigue code, respectively, and the processing parameters were optimized. The results show that the fatigue life of ZK60 sheet metal by single LSP with one side and both sides increased by 72.9% and 78.5% compared with the untreated sample respectively. The size and depth of compressive residual stress increase with the increment of peening number, but when the peening number gets to a certain value, the residual stress reaches saturation and the fatigue life increase no longer significantly.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
H. S. Ho ◽  
D. L. Li ◽  
E. L. Zhang ◽  
P. H. Niu

The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1093 ◽  
Author(s):  
Reggiani

Shot-peening and deep rolling are mechanical surface treatments that are commonly applied to enhance the fatigue performances of components, owing to their capacity to generate compressive residual stresses and induce work hardening. However, literature is still poor of published data concerning the application of these treatments to high strength steels fasteners, although these represent a class of components among the most widespread. In the present work, the impact of deep rolling and shot-peening performed in the underhead radius of two set of fasteners made of 36NiCrMo and 42CrMoV for fatigue life enhancement has been investigated. The experimental tests consisted of six combinations of shot-peening and deep rolling, including the non-treated state. Two test campaigns have been sequentially carried out with different process parameters and treatment sequences. The results always showed a beneficial impact of the deep rolling on fatigue, especially for the 42CrMoV steel. Conversely, the effect of the shot-peening strongly depended on the selected set of parameters, alternatively leading to an improvement or a worsening of the fatigue life in relation to the level of induced surface roughness.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1267
Author(s):  
Chunguo Zhang ◽  
Weizhen Song ◽  
Qitao Wang ◽  
Wen Liu

From tensile overload to shot peening, there have been many attempts to extend the fatigue properties of metals. A key challenge with the cold work processes is that it is hard to avoid generation of harmful effects (e.g., the increase of surface roughness caused by shot peening). Pre-stress has a positive effect on improving the fatigue property of metals, and it is expected to strength Al-alloy without introducing adverse factors. Four pre-stresses ranged from 120 to 183 MPa were incorporated in four cracked extended-compact tension specimens by application of different load based on the measured stress–strain curve. Fatigue crack growth behavior and fractured characteristic of the pre-stressed specimens were investigated systematically and were compared with those of an as-received specimen. The results show that the pre-stress ranged from 120 to 183 MPa significantly improved the fatigue resistance of Al-alloy by comparison with that of the as-received specimen. With increasing pre-stress, the fatigue life first increases, then decrease, and the specimen with pre-stress of 158 MPa has the longest fatigue life. For the manner of pre-stress, no adverse factor was observed for increasing fatigue property, and the induced pre-stress reduced gradually till to disappear during subsequent fatigue cycling.


2021 ◽  
Vol 1027 ◽  
pp. 155-162
Author(s):  
Qiang Wang

In order to study the mechanism of the fatigue strengthening using laser shot peening in GH4169 alloy, micro-structural and nanoscale mechanical twins (MT) at different depth below the top surface subjected to laser shot peening processing (LSP) were investigated by means of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. In terms of the experimental observations and analyses, the formation of refined grains and nanoscale MT mechanism at the near surface of GH4169 alloy as a function of LSP treament can be summarized as follows: (i) two direction low density of MTs divide the initial coarse grains into submicron rhombic blocks; (ii) high density of MTs aligned in two directions subdivide the submicron rhombic blocks into nanoscale rhombic MT blocks; (iii) the third direction MT further refine the nanoscale rhombic MT blocks into nanoscale triangular MT blocks; (iv) some of subdivided blocks evolve into refined grains. An ultra-high strain rate induced by ultra-short laser pulse plays a key role in the formation of refined grains and nanoscale MT during plastic deformation of GH4169 alloy subjected to LSP treatment.


Sign in / Sign up

Export Citation Format

Share Document