On the microstructure, hardness and wear behavior of Al-Fe-Cr quasicrystal reinforced Al matrix composite prepared by selective laser melting

2017 ◽  
Vol 132 ◽  
pp. 105-111 ◽  
Author(s):  
Nan Kang ◽  
Yingqing Fu ◽  
Pierre Coddet ◽  
Bruno Guelorget ◽  
Hanlin Liao ◽  
...  
2021 ◽  
pp. 1-27
Author(s):  
Shuo Li ◽  
Mohamed El Mansori ◽  
Qingzheng Wang ◽  
Nan Kang ◽  
Mourad Elhadrouz

Abstract The wear of aluminum alloy may be decreased by its reinforcement with quasicrystals prepared by melt, which in itself has good wear-resisting properties. This research paper considers the part played by a dense Al-Fe-Cr quasicrystal (QC) reinforced Al matrix composite fabricated by the directed energy deposition (DED) in reducing wear between sliding surfaces and discusses briefly some of the factors which, in practice, explain ceramic-like properties of quasicrystal including low friction and wear resistance. The hardness of reinforcement phases, QC Al91Fe4Cr5 and Al13(Fe, Cr)4, was up to ~ 91 and ~ 112 HV respectively, while the Al matrix was just ~ 70 HV. Furthermore, the reinforcement phases contributed to form the mechanical mixing layer (MML) which significantly decreased the coefficient of friction (COF) and improves the wear resistance. With the increase of load from 1N to 5N, the COF dropped from 0.82 to 0.33 because the higher load was beneficial to the formation of harder and denser MML. Through the comprehensive analysis of the wear test and worn surface, the wear behavior and mechanism of this QC reinforced Al matrix composite has been explained in detail. The results indicate that the quasicrystal reinforced Al matrix composites formed by DED is one of the promising wear-resistance materials.


2011 ◽  
Vol 275 ◽  
pp. 178-181
Author(s):  
Kyun Tak Kim ◽  
Yeong Sik Kim

Thermal spray technology provides wear-resistant coating on the surface of mechanical components. In this study, wear characteristics of SiCp reinforced Al matrix composite coatings were evaluated. SiCp reinforced Al matrix composite coatings were fabricated using the mixed powders which have different fraction of the SiC reinforcement, 0, 20, 40 and 60 vol% on Al 6061 substrate by thermal spray process. Dry sliding wear tests were performed on these coatings using varied sliding speeds and applied loads. Wear behavior of these Al-based composite coatings were investigated using scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX) and X-ray diffraction(XRD). The composites coatings reinforced with 40 vol% of SiC particles showed the most excellent wear resistance. Although the wear rate increased according to the increase in the applied load, it decreased according to the increase in the sliding speed. The major wear behavior of the SiCp reinforced Al matrix composite coatings is transferred from the adhesive wear to the abrasive wear according to the increase in the sliding speed and the applied load. These results were significantly influenced by the formation of mechanical mixed layer(MML).


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


2021 ◽  
pp. 160127
Author(s):  
Zhen Wang ◽  
Mixue Tan ◽  
Jiang Wang ◽  
Jing Zeng ◽  
Fengjun Zhao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1767
Author(s):  
Yuhong Jiao ◽  
Jianfeng Zhu ◽  
Xuelin Li ◽  
Chunjie Shi ◽  
Bo Lu ◽  
...  

Al matrix composite, reinforced with the in situ synthesized 3C–SiC, MgAl2O4, and MgO grains, was produced via the casting process using phenolic resin pyrolysis products in flash mode. The contents and microstructure of the composites’ fracture characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties were tested by universal testing machine. Owing to the strong propulsion formed in turbulent flow in the pyrolysis process, nano-ceramic grains were formed in the resin pyrolysis process and simultaneously were homogeneously scattered in the alloy matrix. Thermodynamic calculation supported that the gas products, as carbon and oxygen sources, had a different chemical activity on in situ growth. In addition, ceramic (3C–SiC, MgAl2O4, and MgO) grains have discrepant contents. Resin pyrolysis in the molten alloy decreased oxide slag but increased pores in the alloy matrix. Tensile strength (142.6 ± 3.5 MPa) had no change due to the cooperative action of increased pores and fine grains; the bending and compression strength was increasing under increased contents of ceramic grains; the maximum bending strength was 378.2 MPa in 1.5% resin-added samples; and the maximum compression strength was 299.4 MPa. Lath-shaped Si was the primary effect factor of mechanical properties. The failure mechanism was controlled by transcrystalline rupture mechanism. We explain that the effects of the ceramic grains formed in the hot process at the condition of the resin exist in mold or other accessory materials. Meanwhile, a novel ceramic-reinforced Al matrix was provided. The organic gas was an excellent source of carbon, nitrogen, and oxygen to in situ ceramic grains in Al alloy.


2021 ◽  
Vol 405 ◽  
pp. 126676
Author(s):  
Xinliang Xie ◽  
Zhanqiu Tan ◽  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Hongjian Wu ◽  
...  

2016 ◽  
Vol 99 ◽  
pp. 120-126 ◽  
Author(s):  
Nan Kang ◽  
Pierre Coddet ◽  
Chaoyue Chen ◽  
Yan Wang ◽  
Hanlin Liao ◽  
...  

2021 ◽  
Vol 316 ◽  
pp. 181-186
Author(s):  
P.A. Lykov ◽  
L. V. Radionova

This paper is devoted to fabrication of alumina reinforced EP648 matrix composite material, using selective laser melting. of two-phase composite powder, prepared by ball milling of metal and ceramic powders. Five 10x10x5 mm bulk specimens were successfully manufactured using different process parameters. The obtained MMC specimens were characterized by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document