scholarly journals Improving mechanical performance of fused deposition modeling lattice structures by a snap-fitting method

2019 ◽  
Vol 181 ◽  
pp. 108065 ◽  
Author(s):  
Wenfeng Liu ◽  
Hongwei Song ◽  
Zhe Wang ◽  
Jiangtao Wang ◽  
Chenguang Huang
2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.


Author(s):  
Guoying Dong ◽  
Daniel Tessier ◽  
Yaoyao Fiona Zhao

AbstractAdditive manufacturing (AM) has enabled great application potential in several major industries. The footwear industry can customize shoe soles fabricated by AM. In this paper, lattice structures are discussed. They are used to design functional shoe soles that can have controllable stiffness. Different topologies such as Diamond, Grid, X shape, and Vintiles are used to generate conformal lattice structures that can fit the curved surface of the shoe sole. Finite element analysis is conducted to investigate stress distribution in different designs. The fused deposition modeling process is used to fabricate the designed shoe soles. Finally, compression tests compare the stiffness of shoe soles with different lattice topologies. It is found that the plantar stress is highly influenced by the lattice topology. From preliminary calculations, it has been found that the shoe sole designed with the Diamond topology can reduce the maximum stress on the foot. The Vintiles lattice structure and the X shape lattice structure are stiffer than the Diamond lattice. The Grid lattice structure buckles in the experiment and is not suitable for the design.


Author(s):  
Surendra Singh Dewada ◽  
Amit Telang

Abstract Additive Manufacturing (AM) is a rapidly evolving technology due to its numerous advantages over traditional manufacturing processes. AM processable materials are limited and have poor mechanical performance, restraining the technology's potential for functional part manufacturing. Although FDM is the most popular and growing technique, the inferiority of the material limits its application to prototyping. Nanocomposite material improves the thermal, mechanical, and electrical performance of FDM objects. Mostly polymer nanocomposites are feasible to process and several researchers have reported enhanced performance with polymer nanocomposites. Carbon nanotubes, graphene nanoplatelets, nano clay, and carbon fiber are primary reinforcements to thermoplastics. The current state of the art relevant to advances in nanocomposites for the FDM process, as well as the influence of nanofillers on mechanical properties of the build object are reviewed in this paper.


Author(s):  
Francesco Leonardi ◽  
Serena Graziosi ◽  
Riccardo Casati ◽  
Francesco Tamburrino ◽  
Monica Bordegoni

Abstract3D printed heterogeneous lattice structures are beam-and-node based structures characterised by a variable geometry. This variability is obtained starting from a periodic structure and modifying the relative density of the unit cells or by combining unit cells having different shapes. While several consolidated design approaches are described to implement the first approach, there are still computational issues to be addressed to combine different cells properly. In this paper, we describe a preliminary experimental study focused on exploring the design issues to be addressed as well as the advantages that this second type of heterogeneous structures could provide. The Three-Point-Bending test was used to compare the behaviour of different types of heterogeneous structures printed using the Fused Deposition Modeling (FDM) technology. Results demonstrated that the possibility of combining multiple unit cells represents a valid strategy for performing a more effective tuning of the material distribution within the design space. However, further studies are necessary to explore the behaviour of these structures and develop guidelines for helping designers in exploiting their potential.


2017 ◽  
Vol 23 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Hao Li ◽  
Shuai Zhang ◽  
Zhiran Yi ◽  
Jie Li ◽  
Aihua Sun ◽  
...  

Purpose This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality. Design/methodology/approach Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated. Findings The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM. Originality/value This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 77
Author(s):  
Sasa Gao ◽  
Ruijuan Liu ◽  
Hua Xin ◽  
Haitao Liang ◽  
Yunfei Wang ◽  
...  

Additive manufacturing provides a novel and robust way to prepare medical product with anatomic matched geometry and tailored mechanical performance. In this study, the surface characteristics, microstructure, and mechanical properties of fused deposition modeling (FDM) prepared polyether-ether-ketone (PEEK) were systematically studied. During the FDM process, the crystal unit cell and thermal attribute of PEEK material remained unchanged, whereas the surface layer generally became more hydrophilic with an obvious reduction in surface hardness. Raster angle has a significant effect on the mechanical strength but not on the failure mechanism. In practice, FDM fabricated PEEK acted more like a laminate rather than a unified structure. Its main failure mechanism was correlated to the internal voids. The results show that horizontal infill orientation with 30° raster angle is promising for a better comprehensive mechanical performance, and the corresponding tensile, flexural, and shear strengths are (76.5 ± 1.4) MPa, (149.7 ± 3.0) MPa, and (55.5 ± 1.8) MPa, respectively. The findings of this study provide guidelines for FDM-PEEK to enable its realization in applications such as orthopedic implants.


Sign in / Sign up

Export Citation Format

Share Document