scholarly journals 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma

2020 ◽  
Vol 186 ◽  
pp. 108336 ◽  
Author(s):  
Yonghui Wang ◽  
Liang Sun ◽  
Zhigang Mei ◽  
Fazhou Zhang ◽  
Meifang He ◽  
...  
2021 ◽  
Vol 11 (22) ◽  
pp. 10727
Author(s):  
Ezgi Saylam ◽  
Yigit Akkaya ◽  
Elif Ilhan ◽  
Sumeyye Cesur ◽  
Ece Guler ◽  
...  

Parkinson’s disease, the second most common neurodegenerative disease in the world, develops due to decreased dopamine levels in the basal ganglia. Levodopa, a dopamine precursor used in the treatment of Parkinson’s disease, can be used as a drug delivery system. This study presents an approach to the use of 3D-printed levodopa-loaded neural tissue scaffolds produced with polylactic acid (PLA) and chitosan (CS) for the treatment of Parkinson’s disease. Surface morphology and pore sizes were examined by scanning electron microscopy (SEM). Average pore sizes of 100–200 µm were found to be ideal for tissue engineering scaffolds, allowing cell penetration but not drastically altering the mechanical properties. It was observed that the swelling and weight loss behaviors of the scaffolds increased after the addition of CS to the PLA. Levodopa was released from the 3D-printed scaffolds in a controlled manner for 14 days, according to a Fickian diffusion mechanism. Mesenchymal stem cells (hAD-MSCs) derived from human adipose tissue were used in MTT analysis, fluorescence microscopy and SEM studies and confirmed adequate biocompatibility. Overall, the obtained results show that PLA/CS 3D-printed scaffolds have an alternative use for the levodopa delivery system for Parkinson’s disease in neural tissue engineering applications.


2020 ◽  
Vol 192 ◽  
pp. 111068 ◽  
Author(s):  
Kejing Shi ◽  
Rodrigo Aviles-Espinosa ◽  
Elizabeth Rendon-Morales ◽  
Lisa Woodbine ◽  
Mohammed Maniruzzaman ◽  
...  

2019 ◽  
Vol 24 (42) ◽  
pp. 5029-5038 ◽  
Author(s):  
Md. Shoaib Alam ◽  
Ayesha Akhtar ◽  
Iftikhar Ahsan ◽  
Sheikh Shafiq-un-Nabi

Background: 3D printed pharmaceutical products are revolutionizing the pharmaceutical industry as a prospective mean to achieve a personalized method of treatments acquired to the specially designed need of each patient. It will depend upon age, weight, concomitants, pharmacogenetics and pharmacokinetic profile of the patient and thus transforming the current pharmaceutical market as a potential alternative to conventional medicine. 3D printing technology is getting more consideration in new medicine formulation development as a modern and better alternative to control many challenges associated with conventional medicinal products. There are many advantages of 3D printed medicines which create tremendous opportunities for improving the acceptance, accuracy and effectiveness of these medicines. In 2015, United State Food and Drug Administration has approved the first 3D printed tablet (Spritam®) and had shown the emerging importance of this technology. Methods: This review article summarizes as how in-depth knowledge of drugs and their manufacturing processes can assist to manage different strategies for various 3D printing methods. The principal goal of this review is to provide a brief introduction about the present techniques employed in tech -medicine evolution from conventional to a novel drug delivery system. Results: It is evidenced that through its unparalleled advantages of high-throughput, versatility, automation, precise spatial control and fabrication of hierarchical structures, the implementation of 3D printing for the expansion and delivery of controlled drugs acts as a pivotal role. Conclusion: 3D printing technology has an extraordinary ability to provide elasticity in the manufacturing and designing of composite products that can be utilized in programmable and personalized medicine. Personalized medicine helps in improving drug safety and minimizes side effects such as toxicity to individual human being which is associated with unsuitable drug dose.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 471
Author(s):  
Ruixiu Li ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
Mohammad Arafat ◽  
Rosa Chung ◽  
...  

A novel drug delivery system preventing Glioblastoma multiforme (GBM) recurrence after resection surgery is imperatively required to overcome the mechanical limitation of the current local drug delivery system and to offer personalised treatment options for GBM patients. In this study, 3D printed biodegradable flexible porous scaffolds were developed via Fused Deposition Modelling (FDM) three-dimensional (3D) printing technology for the local delivery of curcumin. The flexible porous scaffolds were 3D printed with various geometries containing 1, 3, 5, and 7% (w/w) of curcumin, respectively, using curcumin-loaded polycaprolactone (PCL) filaments. The scaffolds were characterised by a series of characterisation studies and in vitro studies were also performed including drug release study, scaffold degradation study, and cytotoxicity study. The curcumin-loaded PCL scaffolds displayed versatile spatiotemporal characteristics. The polymeric scaffolds obtained great mechanical flexibility with a low tensile modulus of less than 2 MPa, and 4 to 7-fold ultimate tensile strain, which can avoid the mechanical mismatch problem of commercially available GLIADEL wafer with a further improvement in surgical margin coverage. In vitro release profiles have demonstrated the sustained release patterns of curcumin with adjustable release amounts and durations up to 77 h. MTT study has demonstrated the great cytotoxic effect of curcumin-loaded scaffolds against the U87 human GBM cell line. Therefore, 3D printed curcumin-loaded scaffold has great promise to provide better GBM treatment options with its mechanical flexibility and customisability to match individual needs, preventing post-surgery GBM recurrence and eventually prolonging the life expectancy of GBM patients.


2019 ◽  
Vol 114 ◽  
pp. 90-97 ◽  
Author(s):  
Alaitz Etxabide ◽  
Jingjunjiao Long ◽  
Pedro Guerrero ◽  
Koro de la Caba ◽  
Ali Seyfoddin

2019 ◽  
Vol 24 (42) ◽  
pp. 5049-5061 ◽  
Author(s):  
Farooq A. Khan ◽  
Kaushik Narasimhan ◽  
C.S.V. Swathi ◽  
Sayyad Mustak ◽  
Gulam Mustafa ◽  
...  

Background: 3D printing/Additive Manufacturing seems a pragmatic approach to realize the quest for a truly customized and personalized drug delivery. 3DP technology, with innovations in pharmaceutical development and an interdisciplinary approach to finding newer Drug Delivery Systems can usher a new era of treatments to various diseases. The true potential of this is yet to be realized, and the US-FDA is focusing on the regulatory science of 3D printed medical devices to help patients access this technology safely and effectively. The approval of the first 3D printed prescription medicine by FDA is a promising step in the translation of more research in this area. Methods: A web-search on PubMed, ScienceDirect, and Nature was performed with the keywords Customized 3D printing and Drug delivery, publications dealing with the aspects of drug delivery using 3D printing for personalized or customized delivery were further considered and analyzed and discussed. Results: We present the advantages offered by 3DP over conventional methods of formulation development and discuss the current state of 3DP in pharmaceutics and how it can be used to develop a truly customized drug delivery system, various 3DP technologies including Stereolithography (SLA), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), Pressure Assisted Microsyringe (PAM) that have been used to develop pharmaceutical products have been discussed along with their limitations and also the regulatory considerations to help formulation scientists envisaging research in this area with the necessary information. Conclusion: 3D printing has the potential to fabricate a customized drug delivery system. Presence of many drug formulation and the devices are already in the regulatory approval process indicating its success.


2019 ◽  
Vol 140 ◽  
pp. 105060 ◽  
Author(s):  
Julius Krause ◽  
Malte Bogdahn ◽  
Felix Schneider ◽  
Mirko Koziolek ◽  
Werner Weitschies

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
AR Bilia ◽  
G Capecchi ◽  
MC Salvatici ◽  
B Isacchi ◽  
MC Bergonzi

Sign in / Sign up

Export Citation Format

Share Document