scholarly journals Development of a technology of isothermal annealing with the use of the forging heat for chromium‑molybdenum steel

2021 ◽  
Vol 203 ◽  
pp. 109590
Author(s):  
Roman Kuziak ◽  
Artur Barełkowski
Author(s):  
Artur Barełkowski ◽  
Roman Kuziak

The article discusses the results of investigations performed during a thermo-mechanical treatment of forgings made of chromium-molybdenum 42CrMo4 grade steel. The treatment was realized during a regular series production. The forging process was combined with a heat treatment carried out directly after forging on a specially adapted station. Such a production technology will make it possible to eliminate the step of repeated heating of the forgings. On the example of an element of a steering gear, it was demonstrated how it is possible to perform an isothermal annealing process starting from the temperature at which the trimming of the forgings ends. During the cooling of the forgings, it is enough to maintain the temperature at the proper level in order for the exothermal phase transformation of austenite into pearlite to take place. With an appropriate design of the processing line, the heat released during the transformation could be used to maintain the applied temperature, thus limiting the consumption of energy needed to power the devices. The test results show that, with the properly selected temperature of isothermal annealing, it is possible to obtain an equilibrial ferritic-pearlitic structure in the required hardness scope. Introducing such a solution into the industrial practice would allow significant savings of the energy used for the heat treatment.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
S. Shinozaki ◽  
J. W. Sprys

In reaction sintered SiC (∽ 5um average grain size), about 15% of the grains were found to have long-period structures, which were identifiable by transmission electron microscopy (TEM). In order to investigate the stability of the long-period polytypes at high temperature, crystal structures as well as microstructural changes in the long-period polytypes were analyzed as a function of time in isothermal annealing.Each polytype was analyzed by two methods: (1) Electron diffraction, and (2) Electron micrograph analysis. Fig. 1 shows microdensitometer traces of ED patterns (continuous curves) and calculated intensities (vertical lines) along 10.l row for 6H and 84R (Ramsdell notation). Intensity distributions were calculated based on the Zhdanov notation of (33) for 6H and [ (33)3 (32)2 ]3 for 84R. Because of the dynamical effect in electron diffraction, the observed intensities do not exactly coincide with those intensities obtained by structure factor calculations. Fig. 2 shows the high resolution TEM micrographs, where the striped patterns correspond to direct resolution of the structural lattice periodicities of 6H and 84R structures and the spacings shown in the figures are as expected for those structures.


1982 ◽  
Vol 43 (C9) ◽  
pp. C9-83-C9-86
Author(s):  
M. Laridjani ◽  
J. F. Sadoc
Keyword(s):  

Author(s):  
D.N. Makhina ◽  
◽  
V.N. Denisov ◽  
Yu.S. Perminova ◽  
V.N. Butrim ◽  
...  

Alloy Digest ◽  
1978 ◽  
Vol 27 (1) ◽  

Abstract UNIFLUX VCM 125 is a continuous flux-cored welding electrode (wire) that is used to deposit 1 1/4% chromium-1/2% molybdenum steel for which it was developed. Welding is protected by a shielding atmosphere of 100% carbon dioxide. This electrode also may be used to weld other low-alloy steels and carbon steels; however, the weld metal may differ somewhat from 1 1/4% chromium-1/2% molybdenum because of weld-metal dilution. When Uniflux VCM 125 is used to weld 1 1/4% chromium-1/2% molybdenum steel, it provides 95,000 psi tensile strength at 70 F and 24 foot-pounds Charpy V-notch impact at 40 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-340. Producer or source: Unicore Inc., United Nuclear Corporation.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract SANBAR 20 is a high-strength chromium-molybdenum steel with high-fatigue strength and excellent wear resistance in the as-rolled condition. The primary application is use as integral drill rods. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: SA-501. Producer or source: Sandvik Steel Company.


Alloy Digest ◽  
1974 ◽  
Vol 23 (6) ◽  

Abstract SAE 4427 is a 0.5% molybdenum steel designed for carburizing applications and it is also useful for general purposes. It is recommended for case-hardened gears, pinions, shafts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-306. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1957 ◽  
Vol 6 (3) ◽  

Abstract AISI 9840 is a nickel-chromium-molybdenum steel very similar to AISI 4340 with lower nickel and slightly higher manganese. In the heat treated condition it has good combination of strength, fatigue resistance, toughness and wear resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-55. Producer or source: Alloy steel mills and foundries.


Sign in / Sign up

Export Citation Format

Share Document