Preparation of expandable graphite with ultrasound irradiation

2007 ◽  
Vol 61 (28) ◽  
pp. 5070-5073 ◽  
Author(s):  
Jihui Li ◽  
Jing Li ◽  
Mei Li
2016 ◽  
Vol 9 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Mohamed Mahmoud Nasef ◽  
Masoumeh Zakeri ◽  
Jahanbakhsh Asadi ◽  
Ebrahim Abouzari-Lotf ◽  
Arshad Ahmad ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1801
Author(s):  
Rafał Oliwa ◽  
Joanna Ryszkowska ◽  
Mariusz Oleksy ◽  
Monika Auguścik-Królikowska ◽  
Małgorzata Gzik ◽  
...  

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3–15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (−87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.


2021 ◽  
Vol 73 ◽  
pp. 105503
Author(s):  
Ekaterina Kholkina ◽  
Narendra Kumar ◽  
Kari Eränen ◽  
Markus Peurla ◽  
Heikki Palonen ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1018
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Antonio Greco

In this work, we studied the transport properties (thermal and electrical conductivity) of smart fabric materials treated with graphite nanomaterial stacks–acetone suspensions. An innovative and easy method to produce graphite nanomaterial stacks–acetone-based formulations, starting from a low-cost expandable graphite, is proposed. An original, economical, fast, and easy method to increase the thermal and electrical conductivity of textile materials was also employed for the first time. The proposed method allows the impregnation of smart fabric materials, avoiding pre-coating of the fibers, thus reducing costs and processing time, while obtaining a great increase in the transport properties. Two kinds of textiles, cotton and Lycra®, were selected as they represent the most used natural and artificial fabrics, respectively. The impact of the dimensions of the produced graphite nanomaterial stacks–acetone-based suspensions on both the uniformity of the treatment and the transport properties of the selected textile materials was accurately evaluated using several experimental techniques. An empirical relationship between the two transport properties was also successfully identified. Finally, several theoretical models were applied to predict the transport properties of the developed smart fabric materials, evidencing a good agreement with the experimental data.


2020 ◽  
Vol 8 (5) ◽  
pp. 1418-1430 ◽  
Author(s):  
Tiankuan Li ◽  
Zhongqian Hu ◽  
Chao Wang ◽  
Jian Yang ◽  
Chuhui Zeng ◽  
...  

Immunotherapy is gradually becoming as important as traditional therapy in the treatment of cancer, but adverse drug reactions limit patient benefits from PD1/PD-L1 checkpoint inhibitor drugs in the treatment of non-small cell lung cancer (NSCLC).


Sign in / Sign up

Export Citation Format

Share Document