Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries

2009 ◽  
Vol 63 (11) ◽  
pp. 955-958 ◽  
Author(s):  
Se-Won Yook ◽  
Hyoun-Ee Kim ◽  
Byung-Ho Yoon ◽  
Young-Mi Soon ◽  
Young-Hag Koh
2007 ◽  
Vol 336-338 ◽  
pp. 1567-1570 ◽  
Author(s):  
Sang Ho Min ◽  
Hyeong Ho Jin ◽  
B.S. Jun ◽  
Ik Min Park ◽  
Hong Chae Park ◽  
...  

Porous HAp scaffolds have been prepared by using the slurry including HAp and magnesia based on the replication of polymer sponge substrate. The influence of HAp and MgO content in slurry on the pore morphology and size, and density, porosity, and mechanical strength of porous HAp scaffolds was investigated. The obtained scaffolds with average pore sizes ranging 150 to 300 μm had open, relatively uniform, and interconnected porous structure regardless of HAp and MgO content. As the MgO content increased, the pore network frame of scaffolds became to be relatively stronger, even though the pore size was not much changed. The compressive strength of the scaffolds increased rapidly with the increase of MgO content at a fixed HAp content because of increasing the pore wall thickness and density of the scaffolds. As a result, the porosity, density, and compressive strength of the porous HAp scaffolds scaffolds prepared by the sponge method were significantly affected by the addition of MgO.


2010 ◽  
Vol 105-106 ◽  
pp. 616-619 ◽  
Author(s):  
Li Li Wang ◽  
Xiu Feng Wang ◽  
Hong Tao Jiang ◽  
Cheng Long Yu

Hydroxyapatite (HA) doped with 3%yttria-stabilized 20wt% zirconia (ZrO2) ceramic were developed in order to produce a porous composite biomaterial by integrating the gel-casting technique with polymer sponge method with improved mechanical strength and controllable porous structure. The pore morphology, size, and distribution of the scaffolds were characterized using an electron microscope. The scaffolds prepared have an open, uniform and interconnected porous structure with a pore size of 300~500m. The porosity of the open pores in the scaffold can be controlled by changing HA-ZrO2 composite concentration and it is between 87%~35%. A compressive strength of 12MPa for HA-ZrO2 porous scaffolds with HA-ZrO2 concentration of 55wt% was achieved, which is comparable to that of cortical bone.


2021 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Fardatul Azkiyah ◽  
Drs. Djony Izak Rudyardjo, M.Si. ◽  
Jan Ady

Research on the synthesis and characterization of porous hydroxyapatite with the addition of ZnO nanoparticles has been carried out through a combination of foam immersion and injection methods. This research was conducted to optimize the previous research by increasing the variation of ZnO composition and adding the injection method to the research process. The materials used in this research include hydroxyapatite nanoparticles, ZnO nanoparticles, Aquades, PVA and polyurethane foam. Manufacturing is done by immersing polyurethane foam into a slurry. Slurry is a mixture of PVA and hydroxyapatite solutions with variations in the addition of ZnO nanoparticles (8 wt%, 10 wt%, 12 wt%, and 14 wt%). Then inject the remaining slurry into the foam. After that the sample was dried and heated at a temperature of 650ºC to remove foam and PVA, then the sample was sintered at a temperature of 1200ºC for 3 hours. Based on SEM analysis, porosity test, and compressive strength test, the best results were shown by sample IV because it had a pore diameter of 142.9 – 371.4 m with a porosity of 69.983%, a compressive strength value of 1.8653 MPa and non-toxic. The best results have not met the standard for bone filler application. In further research, improvements need to be made by using other additives such as ZrO2, so that it can improve the mechanical properties of porous hydroxyapatite to meet standard bone filler applications.


2019 ◽  
Vol 966 ◽  
pp. 145-150
Author(s):  
Siswanto ◽  
Dyah Hikmawati ◽  
Aminatun ◽  
Miranda Zamawi Ichsan

Synthesis of porous hydroxyapatite-collagen composites for bone implant applications has been carried out. Hydroxyapatite synthesized from coral by the precipitation method, while Collagen synthesized from chicken claws. Collagen formation was carried out by freeze-dry technique with variations in freezing time of 2, 4 and 6 hours at -80 ° C. The next process was by drying in a lyophilizer. Characterization of samples was carried out using Fourier Transform Infra Red (FTIR), Scanning Electron Microscopy (SEM), compressive strength test and cytotoxicity test with Microtetrazolium (MTT) assay. FTIR results proved that collagen uptake and hydroxyapatite combine chemically. This is indicated by the absorption of functional groups that did not coincide between collagen and hydroxyapatite functional groups with composites. SEM observations showed that the largest pore size was obtained at freezing for 2 hours which was 774 μm and the smallest in freezing for 6 hours was 640 μm. This pore size was an important parameter of the bone implant because it played a role in the osteoinductive process. The composite compressive strength test results for freezing 2 hours, 4 hours and 6 hours respectively was 737 KPa, 842 KPa and 707.7 KPa. The results of the cytotoxicity test with MTT showed the percentage of cell viability above 100%. This means that the Hydroxyapatite-collagen composite is non-toxic. So, the sample formed has qualified as a bone implant candidate.


2012 ◽  
Vol 445 ◽  
pp. 463-468 ◽  
Author(s):  
E. Pujiyanto ◽  
A.E. Tontowi ◽  
Muhammad Waziz Wildan ◽  
Widowati Siswomihardjo

In the present study, hydroxyapatite was synthesized from local gypsum by microwave-hydrothermal method. Different percentage amounts of zirconia (0, 20, 30 and 40 wt.%) and poly-methyl methacrylate (40, 50 and 60 wt.%) mixed with hydroxyapatite (HA) for six hours. These powder mixture were deposited using deposition machine to produce specimens. These specimens were sintered at a temperature of 140°C with holding time for 1 hour into the green parts. These green parts were sintered at temperature of 1450°C with holding time for 2 hours. This process produces porous hydroxyapatite-zirconia composites with porosity between 62.76-73.92 percent. These composites were examined by XRD, XRF, SEM-EDX, BET analysis and compressive strength testing. Compressive strength of porous hidroxyapatite-zirconia composite decreased from 3.706 to 0.039 MPa when percentage amounts of zirconia increased up to 40 wt.%. This caused by several factors i.e. increased porosity, grain zirconia cracked, zirconia reacted with HA to produce CaZrO3, β-TCP and α-TCP, HA matrix cracks because of the phase change of tetragonal-zirconia into monoclinic-zirconia.


2016 ◽  
Vol 881 ◽  
pp. 187-192
Author(s):  
Amanda A. Barbosa ◽  
Andrea V. Ferraz ◽  
Geciane A. Santos ◽  
Nelson C. Olivier ◽  
Alan Christie Silva Dantas

Porous bodies were produced using hydroxyapatite as a starting material, gypsum, high purity material, low cost and that can be molded into the desired shape. Also, beads of polystyrene polymer. The first step of this work was to produce porous gypsum blocks obtained by mixing gypsum, water and polystyrene. After drying, they were submerged in acetone solvent for solubilizing the polymer and pore formation. The porous hydroxyapatite was synthesized in a second stage, where the porous gypsum blocks were immersed in a solution of (NH4)2HPO4 0.5 mol L-1 to 100 ° C and pH 7.0-9.0 for 24 hours. From this method, it was possible to produce bodies single phase hydroxyapatite with a maximum porosity of 70 ± 3% and a compressive strength of 1.48 ± 0.17 MPa.


2013 ◽  
Vol 747 ◽  
pp. 123-126 ◽  
Author(s):  
Eko Pujiyanto ◽  
Alva Edy Tontowi ◽  
Muhammad Waziz Wildan ◽  
Widowati Siswomihardjo

This study prepared porous hydroxyapatite (porous HA) as synthetic scaffold and find out chemical properties, porosity, compressive strength and cytotoxicity properties. Porous HA was prepared by powder deposition and sintering from HA-PMMA mixed powder. Porous HA characterizations were conducted by XRD, XRF, SEM-EDX and mercury porosimetry analysis. In vitro cytotoxicity testing of porous HA was conducted by MTT method using vero cells. Porous HA has porosity on the interval 62.79 to 69.67% and compressive strength on the interval 1.53 to 3.71 MPa. Optimal porous HA has porosity is 62.79% with compressive strength is 3.71 MPa. Mercury porosimetry analysis showed that optimal porous HA has interconnective porosity up to 88.25% with pore size on the interval 0.05-355 μm and median pore is 52.64 μm. There was no significantly difference in the death percentage of vero cells caused HA powder and optimal porous HA (p= 0.158) but concentration of optimal porous HA were significantly effect on the percentage of vero cells death (p=0.003).


2006 ◽  
Vol 510-511 ◽  
pp. 754-757 ◽  
Author(s):  
Sang Ho Min ◽  
Hyeong Ho Jin ◽  
Hoy Yul Park ◽  
Ik Min Park ◽  
Hong Chae Park ◽  
...  

Porous hydroxyapatite (HAp) scaffolds were successfully prepared by using the HAp slurry based on the replication of polymer sponge substrate. The effect of HAp content in slurry on the pore morphology and size, and density, porosity, and mechanical strength of porous scaffolds was investigated. The scaffolds with average pore sizes ranging from 200 to 400 µm had an open, relatively uniform, and interconnected porous structure. As the HAp content increased, the porosity of scaffold decreased while the density increased. These phenomena were attributed to the fact that the pores became interconnected with more dense and thicker pore walls with increasing HAp content in slurry. The results suggest that the density, porosity, and compressive strength of the porous HAp scaffold were significantly affected by the content of the HAp powder in the slurry.


Sign in / Sign up

Export Citation Format

Share Document