Systematic synthesis of polyimide@inorganics core-shell microspheres via ion-exchange and interfacial reaction

2016 ◽  
Vol 177 ◽  
pp. 30-33 ◽  
Author(s):  
Wei Liu ◽  
Zhixiao Xu ◽  
Dezhen Wu ◽  
Zhanpeng Wu ◽  
Travis Shihao Hu
2019 ◽  
Vol 25 ◽  
pp. 84-89 ◽  
Author(s):  
Afaf Mohammad Babeer ◽  
Lubna Aamir

This work presents the synthesis of zinc oxide /silver sulfide (ZnO/Ag2S) core/shell type composite; using combined wet chemical precipitation method and ion exchange mechanism; for wide range absorption of visible spectra by the composite. Synthesis is performed in three steps. In the first step; ZnO nanoparticles (nanocores) are produced, in the second step; ZnS layer is deposited over ZnO nanocores and in the third step; Zn from ZnS is replaced by Ag to form Ag2S shell over ZnO; using ion exchange mechanism. The presence of reflection peaks of ZnO and Ag2S in XRD spectra confirms the formation of ZnO/Ag2S composite. SEM image of ZnO shows the formation of near spherical ZnO nanoparticles of diameter in range 256nm to 584nm with a smooth surface, while SEM image of ZnO/Ag2S composite shows the formation of Ag2S layer over ZnO cores as indicated by rougher and contrasted surface as compared to bare ZnO cores. Also, the size of composite particles became larger than ZnO nanocores (100µm-200µm), which further confirms the formation of Ag2S shell over ZnO nanocores. The optical absorption spectrums of both ZnO and ZnO/Ag2S composite clearly indicate that synthesized composite absorb strongly in UV to IR region of the electromagnetic spectrum as compared to ZnO nanocores; which absorb only in UV region. Therefore, the synthesized composite could be used as a photovoltaic material.


2015 ◽  
Vol 3 (8) ◽  
pp. 4239-4247 ◽  
Author(s):  
Tiantian Hong ◽  
Zhifeng Liu ◽  
Hui Liu ◽  
Junqi Liu ◽  
Xueqi Zhang ◽  
...  

A fast, versatile and low-cost hydrothermal chemical synthesis based on ion-exchange has been used to deposit a shell of cupric selenite onto vertically aligned zinc oxide nanorod arrays with a buffer layer of zinc selenite for photoelectrochemical water splitting.


2016 ◽  
Vol 4 (19) ◽  
pp. 7214-7221 ◽  
Author(s):  
Shuang Jiao ◽  
Jin Wang ◽  
Qing Shen ◽  
Yan Li ◽  
Xinhua Zhong

A CdS passivation layer was introduced to a PbS QD surface to synthesize PbS/CdS core/shell QDs through an ion exchange procedure, achieving a record PCE of 7.19% for PbS-based liquid-junction quantum dot sensitized solar cells.


2017 ◽  
Vol 5 (30) ◽  
pp. 7431-7435 ◽  
Author(s):  
Sunqi Lou ◽  
Tongtong Xuan ◽  
Caiyan Yu ◽  
Mengmeng Cao ◽  
Chao Xia ◽  
...  

The CsPbBr3@NH4Br nanocomposites were successfully synthesized through ion exchange. The nanocomposites possessed a special core@shell structure and exhibited a high absolute PLQY, long lifetime, good water resistance and excellent thermal stability.


2020 ◽  
Vol 379 ◽  
pp. 122344 ◽  
Author(s):  
Jinxin Xie ◽  
Xukai Li ◽  
Weirui Chen ◽  
Xianglin Sun ◽  
Kexin Chen ◽  
...  

2021 ◽  
Author(s):  
A. C. Ferdinand ◽  
D. Manikandan ◽  
P. Manikandan ◽  
R. Gaur ◽  
P. S. Raman ◽  
...  

Abstract Technologically driven some glass materials are containing metal clusters have attracted quite attention both in cluster research and in possible futuristic applications of such nanoclusters for magnetic or optoelectronic purposes. In this regard, formation of bimetallic alloys and core–shell nanostructures inside a soda-lime glass were prepared by simple ion-exchange methods and further studied by the optical absorption (OA) properties. Further, we made an attempt for the first time the novel route for the synthesis of bimetallic nanoclusters, gold in various doses was directly implanted in a plain soda-lime glass as well as in a copper and silver ion-exchanged soda-lime glass using the tandem accelerator anticipating the core–shell or alloys phase between the metal species. Also, the post implanted gold (Au+) metal ions were investigated by Rutherford backscattering spectroscopy (RBS) analysis performed on the Cu and Ag ion-exchanged samples to confirm the presence of bimetallic clusters formed by ion-exchange during implantation.


2021 ◽  
Vol 118 (52) ◽  
pp. e2114551118
Author(s):  
Layne B. Frechette ◽  
Christoph Dellago ◽  
Phillip L. Geissler

Chemical transformations, such as ion exchange, are commonly employed to modify nanocrystal compositions. Yet the mechanisms of these transformations, which often operate far from equilibrium and entail mixing diverse chemical species, remain poorly understood. Here we explore an idealized model for ion exchange in which a chemical potential drives compositional defects to accumulate at a crystal’s surface. These impurities subsequently diffuse inward. We find that the nature of interactions between sites in a compositionally impure crystal strongly impacts exchange trajectories. In particular, elastic deformations which accompany lattice-mismatched species promote spatially modulated patterns in the composition. These same patterns can be produced at equilibrium in core/shell nanocrystals, whose structure mimics transient motifs observed in nonequilibrium trajectories. Moreover, the core of such nanocrystals undergoes a phase transition—from modulated to unstructured—as the thickness or stiffness of the shell is decreased. Our results help explain the varied patterns observed in heterostructured nanocrystals produced by ion exchange and suggest principles for the rational design of compositionally patterned nanomaterials.


2017 ◽  
Vol 5 (48) ◽  
pp. 25494-25500 ◽  
Author(s):  
Yunxiao Li ◽  
Dafeng Yan ◽  
Yuqin Zou ◽  
Chao Xie ◽  
Yanyong Wang ◽  
...  

We report an extremely simple and fast method to synthesize a NixFe1−xSe@Ni(Fe)OOH core–shell nanostructure with a nanosheet shell by a facile solvothermal selenization and ion exchange reaction.


Sign in / Sign up

Export Citation Format

Share Document