scholarly journals Elastic forces drive nonequilibrium pattern formation in a model of nanocrystal ion exchange

2021 ◽  
Vol 118 (52) ◽  
pp. e2114551118
Author(s):  
Layne B. Frechette ◽  
Christoph Dellago ◽  
Phillip L. Geissler

Chemical transformations, such as ion exchange, are commonly employed to modify nanocrystal compositions. Yet the mechanisms of these transformations, which often operate far from equilibrium and entail mixing diverse chemical species, remain poorly understood. Here we explore an idealized model for ion exchange in which a chemical potential drives compositional defects to accumulate at a crystal’s surface. These impurities subsequently diffuse inward. We find that the nature of interactions between sites in a compositionally impure crystal strongly impacts exchange trajectories. In particular, elastic deformations which accompany lattice-mismatched species promote spatially modulated patterns in the composition. These same patterns can be produced at equilibrium in core/shell nanocrystals, whose structure mimics transient motifs observed in nonequilibrium trajectories. Moreover, the core of such nanocrystals undergoes a phase transition—from modulated to unstructured—as the thickness or stiffness of the shell is decreased. Our results help explain the varied patterns observed in heterostructured nanocrystals produced by ion exchange and suggest principles for the rational design of compositionally patterned nanomaterials.

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Kangwei Li ◽  
Mingming Yan ◽  
Jiandong Shen ◽  
Xin Zhang ◽  
Chunmei Geng ◽  
...  

As atmospheric fresh soot particles age, they become coated with other chemical species. This transforms their physicochemical properties and affects their optical characteristics, which is of great importance to air quality, the environment and climate change. One of the predominantly occurring states of soot particles in the ambient environment is the core-shell mixing state. In this study, we used the core-shell model to calculate the optical absorption, scattering and extinction efficiency, absorption proportion and absorption exponent of coated soot particles. We then investigated the effects of different core sizes (D0), incident wavelengths (λ), coating materials and coating thicknesses on these optical characteristics. Absorption efficiency and absorption proportion of soot particles decreased as the coating became thicker, at core sizes of D0 = 20, 50 and 100 nm and λ = 405, 532 and 781 nm, regardless of the type of coating material. As the coating thickness increased, the absorption exponent (β) of inorganic-coated soot particles tended to rise and then fall, while the β value of organic-coated soot particles kept increasing. Our results advance our scientific understanding of the interaction of optical properties with chemical composition, mixing state, and aging processes of soot particles in the atmosphere.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Tao Peng ◽  
Wei Guo ◽  
Yingge Zhang ◽  
Yangbo Wang ◽  
Kejia Zhu ◽  
...  

Abstract The reasonable design of nanostructure is the key to solving the inherent defects and realizing a high performance of Li2FeSiO4 cathode materials. In this work, a novel heterostructure CNT@Li2FeSiO4@C has been designed and synthesized and used as a cathode material for lithium-ion battery. It is revealed that the product has a uniform core-shell structure, and the thickness of the Li2FeSiO4 layer and the outer carbon layer is about 19 nm and 2 nm, respectively. The rational design effectively accelerates the diffusion of lithium ions, improves the electric conductivity, and relieves the volume change during the charging/discharging process. With the advantages of its specific structure, CNT@Li2FeSiO4@C has successfully overcome the inherent shortcomings of Li2FeSiO4 and shown good reversible capacity and cycle properties.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yao Chen ◽  
Dong Yang ◽  
Yuchen Gao ◽  
Runlai Li ◽  
Ke An ◽  
...  

The rational design of an outer shell is of great significance to promote the photocatalytic efficiency of core-shell structured photocatalysts. Herein, a covalent organic framework (COF) nanoshell was designed and deposited on the cadmium sulfide (CdS) core surface. A typical COF material, TPPA, featuring exceptional stability, was synthesized through interfacial polymerization using 1, 3, 5-triformylphloroglucinol (TP) and p-phenylenediamine (PA) as monomers. The nanoshell endows the CdS@TPPA nanosphere with ordered channels for unimpeded light-harvesting and fast diffusion of reactants/products and well-defined modular building blocks for spatially charge separation. Moreover, the heterojunction formed between CdS and TPPA can further facilitate the effective charge separation at the interface via lower exciton binding energy compared with that of pristine TPPA. By modulating the thickness of TPPA nanoshell, the CdS@TPPA nanosphere photocatalyst with the nanoshell thickness of about 8±1 nm exhibits the highest photocatalytic H2 evolution of 194.1 μmol h-1 (24.3 mmol g-1 h-1, 8 mg), which is superior to most of the reported COF-based photocatalysts. The framework nanoshell in this work may stimulate the thinking about how to design advanced shell architecture in the core-shell structured photocatalysts to achieve coordinated charge and molecule transport.


2017 ◽  
Vol 31 (23) ◽  
pp. 1750218 ◽  
Author(s):  
Mingye Sun ◽  
Youjin Zheng ◽  
Lei Zhang ◽  
Liping Zhao ◽  
Bing Zhang

The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4[Formula: see text],4[Formula: see text]-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Francesco Ruffino

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core–shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.


Author(s):  
Yi Guan ◽  
Nan Li ◽  
Jiao He ◽  
Yongliang Li ◽  
Lei Zhang ◽  
...  

Herein, we report a post-assembly strategy by growing the bimetallic Co/Zn zeolitic imidazolate frameworks (BIMZIF) on the surface of the customized Mo metal-organic frameworks (MOFs) (Mo-MOF) to prepare the core-shell...


Sign in / Sign up

Export Citation Format

Share Document