Fluorapatite-glass-ceramics obtained by heat treatment of a gel synthesized by the sol-gel processing method

2018 ◽  
Vol 215 ◽  
pp. 280-283 ◽  
Author(s):  
Nouha Jmal ◽  
Jamel Bouaziz
1990 ◽  
Vol 5 (5) ◽  
pp. 1095-1103 ◽  
Author(s):  
Ann M. Kazakos ◽  
Sridhar Komarneni ◽  
Rustum Roy

Three series of cordierite powders were prepared by the sol-gel route: a single phase (monophasic) gel prepared from alkoxides, a nominally triphasic nanocomposite gel made with two nanosized powders and one solution phase, and a truly compositionally triphasic nanocomposite gel prepared from three nanosized powders. Crystalline α-cordierite seeds were also incorporated with the gels and their effectiveness as nucleating agents was investigated and found to lower the crystallization temperature of α-cordierite by 125–150°C. The densification behavior of powder compacts was examined and alterations made to the heat treatment until optimum conditions were found. The truly triphasic compact sintered at 1300°C for 2 h resulted in 100% of theoretical density whereas the nominally triphasic and monophasis pellets densified to 96% and 80%, respectively. The enhanced densification achieved with powder compacct prepared for triphasic nanocomposite gels is due to part to the excess free energy of the three components.


2005 ◽  
Vol 30 (1) ◽  
pp. 51-58 ◽  
Author(s):  
C. U. Ferreira ◽  
J. E. Gonçalves ◽  
Y. V. Kholin ◽  
Y. Gushikem

The porous mixed oxide SiO2/TiO2/Sb2O5 obtained by the sol-gel processing method presented a good ion exchange property and a high exchange capacity towards the Li+, Na+ and K+ ions. In the H+/M+ ion exchange process, the H+ / Na+ could be described as presenting an ideal character. The ion exchange equilibria of Li+ and K+ were quantitatively described with the help of the model of fixed tetradentate centers. The results of simulation evidence that for the H+ / Li+ exchange the usual situation takes place: the affinity of the material to the Li+ ions is decreased with increasing the degree of ion exchange. On the contrary, for K+ the effects of positive cooperativity, that facilitate the H+ / K+ exchange, were revealed.


1984 ◽  
Vol 32 ◽  
Author(s):  
L.L. Hench

Various methods have been developed for producing crystals, powders, coatings and monoliths from gels [1]. The scientific basis for understanding compositional effects, gelation, aging, drying and densification is also advancing rapidly [2]. However, there is as yet relatively little information on the durability, weathering, or corrosion resistance of glasses, glass-ceramics, ceramics, or composites made via the gel route. Data is also sparse on the effects of vacuum, thermal exposure, or mechanical stress on the stability of gel-derived solids. Relationships between sol-gel processing variables and environmental stability are especially lacking at the present time. Since many end-use applications of gel derived materials involve exposure to severe environments, it is essential that the durability of these materials be established during their development.


1991 ◽  
Vol 6 (2) ◽  
pp. 217-219 ◽  
Author(s):  
Mari A. Hogan ◽  
Subhash H. Risbud

Amorphous powders in the Cs2O–Al2O3−SiO2 system were prepared by sol-gel processing. Gels made from TEOS, Al-chelate, and Cs-acetate were dried and calcined to obtain molecularly mixed powders of analyzed compositions in the range useful for conversion to pollucite (CsAlSi2O6) glass-ceramics. X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetry (TG), and scanning electron microscopy (SEM) were used to characterize the powders. A typical amorphous powder of analyzed chemical composition (in wt.%) = 28.05Cs2O, 37.77SiO2, and 37.96Al2O3 was found to have a glass transition temperature of 945 °C and a glass crystallization temperature of 1026 °C. Preliminary experimental results of densification and crystallization of the amorphous powders show pollucite/mullite phases to be present.


1998 ◽  
Vol 541 ◽  
Author(s):  
Y. Wu ◽  
F. S. Ohuchi ◽  
G. Z. Cao

AbstractFerroelectric layered perovskite strontium bismuth niobium oxide SrBi2Nb2O9(SBN) ceramics and films were made by sol-gel processing. A multiple step hydrolysis-condensation process was applied to the synthesis of the SBN sol by using inorganic salts as precursors with citric acid as a complexing agent. Single phase polycrystalline SBN was obtained after heat-treatment at 650°C. It was found that the dielectric constants of SBN ceramics were dependent on heat-treatment. SEM, XPS, TGA/DTA and XRD analyses indicated that bismuth-deficiency may contribute to the relatively low dielectric constants. While a prolonged firing time at high temperatures may lead to a lattice expansion resulting in a significant decrease of the dielectric constant. C-oriented SBN films were obtained by dip-coating onto SrTiO3 substrates and the films are dense and crack-free with a thickness of 900 nm.


1990 ◽  
Vol 180 ◽  
Author(s):  
Dennis J. Eichorst ◽  
D. A. Payne

ABSTRACTStructural rearrangements during the sol-gel processing of lithium niobate were investigated by FTlR and Raman spectroscopic methods. The reaction of lithium ethoxide with niobium ethoxide resulted in the formation of a bimetallic alkoxide, LiNb(OEt)6 , which could be crystallized from solution. Single crystals were comprised of helical polymeric units consisting of niobium octahedra linked by lithium in tetrahedral (distorted) coordination. Successive crystallizations from solution allowed for the enhanced purification of the alkoxide precursor. Hydrolysis of the bimetallic alkoxide resulted in the formation of an amorphous network structure, which contained niobium-oxygen octahedral units modified by lithium. Heat-treatment facilitated structural rearrangements for the niobium environment, which allowed for the formation of the lithium niobate crystal structure. Further heat-treatment above 700°C resulted in structural changes associated with lithium oxide volatility.


1992 ◽  
Vol 7 (4) ◽  
pp. 992-996 ◽  
Author(s):  
Ulagaraj Selvaraj ◽  
A.V. Prasadarao ◽  
Sridhar Komarneni ◽  
Keith Brooks ◽  
Stewart Kurtz

Homogeneous and stoichiometric PbTiO3 and PbZr0.52Ti0.48O3 gel fibers were drawn from viscous solutions prepared by sol-gel processing of alkoxide precursors. The fibrous gels on heating at 450 and 600 °C, respectively, formed the well-crystallized phases of PbTiO3 and PbZr0.52Ti0.48O3. Fibers heat treated at 700 °C are a few centimeters long and 50 to 150 μm in diameter. PbZr0.52Ti0.48O3 fibers subjected to heat treatment at 700 °C for 1 h consisted of fully dense submicron grains (0.15 to 0.2 μm). However, PbTiO3 fibers under analogous conditions showed a few micropores with grains of ∼0.1 μm. Dielectric constants of these PbTiO3 and PbZr0.52Ti0.48O3 fibers were approximately 300 and 800, respectively.


Sign in / Sign up

Export Citation Format

Share Document