Improving the oxidation resistance of thermoelectric Mg2Si leg with silica coating

2022 ◽  
pp. 131599
Author(s):  
Priyadarshini Balasubramanian ◽  
Manjusha Battabyal ◽  
Raghavan Gopalan
2011 ◽  
Vol 148-149 ◽  
pp. 534-537
Author(s):  
Chun Xiang Gao

A very effective approach to improve the oxidation resistance of Ti-6Al-4V alloy was proposed. The Ti-6Al-4V alloy was firstly phosphated and then coated by silica using sol-gel dip-coating technique. A duplex layer of TiP2O7 and amorphous silica was synthesized at the alloy surface. The isothermal and cyclic oxidation behavior of the treated alloy with silica coating and the corresponding bare alloy was investigated at 600 oC in static air to investigate the synergetic effect of phosphorization and amorphous SiO2 coating on the oxidation resistance of the alloy. The isothermal and cyclic oxidation resistances of the alloy were greatly improved.


Author(s):  
C. S. McDowell ◽  
S. N. Basu

Oxidation resistance of stainless steels, which rely on the formation of a Cr2O3 (chromia) scale, can be further improved through minor alloying additions such as Al or Si, or by application of coatings to the exposed surfaces. Although, additions of Si to austenitic steels have demonstrated an improvement in oxidation resistance, high Si contents can be detrimental to the mechanical properties of these alloys. The application of a silica coating on the surface of the stainless steel provides improved oxidation resistance without detrimental effects on the mechanical properties. This study examines the effect of the grain size of the stainless steel on the effectiveness of a silica coating as an oxidation barrier.Fully austenitic stainless steel of composition Fe-18(wt%)Cr-20Ni-1.5Mn was produced in both coarsegrained and fine-grained form. The coarse-grained alloy, with a grain size of approximately 100 μm, was produced by casting and hot rolling. The fine-grained alloy, with a grain size of approximately 5 μm, was produced by rapid solidification powder processing, followed by consolidated by hot isostatic pressing and swaging.


2014 ◽  
Vol 809-810 ◽  
pp. 535-539 ◽  
Author(s):  
Jia Lin Liu ◽  
Wang Xi Zhang ◽  
Jing Xian Han ◽  
Bao Yan Liang ◽  
Guo Rong Ma

An oxide-alumina-silicacoating which would to improve the oxidation resistance of carbon fibers was prepared by sol-gel method. XRD and SEM were used to characterize the surface appearance and phase transition about the carbon fibers with oxide-alumina-silica coating. The oxidation resistance of carbon fibers was also analyzed with the DSC-TG and the isothermal oxidation experiment. It was shown that the antioxidant properties of the carbon fibers with oxide-alumina-silica coating improved significantly. The concentration of precursor sol had an influence on the coating of carbon fibers and the antioxidant properties of the carbon fibers with oxide alumina silica coating increased 300°C compared to uncoated ones.


Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (8) ◽  
pp. 515-521 ◽  
Author(s):  
EIJA KENTTÄ ◽  
HANNA KOSKELA ◽  
SARA PAUNONEN ◽  
KARITA KINNUNEN-RAUDASKOSKI ◽  
TUOMO HJELT

This paper reports experiments on silica coating formulations that are suitable for application as a thin pigment layer with foam coating technique on a paper web. To understand the foaming properties of nanosilica dispersions, the critical micelle concentration, foam half-life time, and foam bubble size stability were determined with three different foaming agents. The results indicate that the bubble stability measurement is a useful characterization method for foam coating purposes. Pilot foam coating trials were done and the effects of the chosen foaming agents were studied on the properties of the nanosilica-coated paper. The surface hydrophilicity of silica coated paper was related not only to silica pigment, but also to the chemical nature of the foaming agent. Standard paper properties were not affected by the thin silica coating.


Sign in / Sign up

Export Citation Format

Share Document