Effect Of Heat Treatment On Microstructure And Properties of High Entropy Alloy Reinforced Titanium Metal Matrix Composites

2019 ◽  
Vol 18 ◽  
pp. 2409-2414
Author(s):  
CH.V. Satyanarayanaraju ◽  
Rahul Dixit ◽  
Pooja Miryalkar ◽  
S. Karunanidhi ◽  
A. AshokKumar ◽  
...  
2021 ◽  
Vol 11 (14) ◽  
pp. 6580
Author(s):  
Sangwoo Nam ◽  
Hyung Won Lee ◽  
In-Ho Jung ◽  
Young-Min Kim

TiC-reinforced metal matrix composites were fabricated by laser cladding and FeCrCoNiAlTiC high entropy alloy powder. The heat of the laser formed a TiC phase, which was consistent with the thermodynamic calculation, and produced a coating layer without interfacial defects. TiC reinforcing particles exhibited various morphologies, such as spherical, blocky, and dendritic particles, depending on the heat input and coating depth. A dendritic morphology is observed in the lower part of the coating layer near the AISI 304 substrate, where heat is rapidly transferred. Low heat input leads to an inhomogeneous microstructure and coating depth due to the poor fluidity of molten pool. On the other hand, high heat input dissolved reinforcing particles by dilution with the substrate. The coating layer under the effective heat input of 50 J/mm2 had relatively homogeneous blocky particles of several micrometers in size. The micro-hardness value of the coating layer is over 900 HV, and the nano-hardness of the reinforcing particles and the matrix were 17 GPa and 10 GPa, respectively.


2009 ◽  
Vol 52 (4) ◽  
pp. 322-328 ◽  
Author(s):  
I. Montealegre-Melendez ◽  
E. Neubauer ◽  
H. Danninger

2020 ◽  
Vol 321 ◽  
pp. 11028
Author(s):  
S.V. Prikhodko ◽  
O.M. Ivasishin ◽  
P.E. Markovsky ◽  
D.G. Savvakin ◽  
O.O. Stasiuk

Due to the high specific strength of Ti, materials on its base are indispensable when high-strength and low-weight requests are a chief demand from the industry. Reinforcement of Ti-alloys with hard and light particles of TiC and TiB is a credible pathway to make metal matrix composites (MMC) with enhanced elastic moduli without compromising the material’s low-weight. However, reinforcement of the alloy with hard particles inevitably lowers the value of toughness and plasticity of material. Yet, in many applications simultaneous high hardness and high plasticity are not required through the entire structure. For instance, parts that need enhanced wear resistance or resistance upon ballistic impact demand high hardness and strength at the surface, whereas their core necessitates rather high toughness and ductility. Such combination of mechanical properties can be achieved on layered structures joining two and more layers of different materials with different chemical composition and/or microstructure within each individual layer. Multi-layered structures of Ti-6Al-4V alloy and its metal-matrix composites (MMC) with 5 and10% (vol.) of TiC and TiB were fabricated in this study using blended elemental powder metallurgy (BEPM) of hydrogenated Ti. Post-sintering hot deformation and annealing were sometimes also employed to improve the microstructure and properties. Structure of materials were characterized using light optical microscopy, scanning electron microscopy, electron backscattered diffraction, x-ray microscopy, tensile and 3-point flexural tests. The effect of various fabrication parameters was investigated to achieve desirable microstructure and properties of layered materials. Using optimized processing parameters, relatively large multilayered plates were made via BEPM and demonstrate superior anti-ballistic performance compared to the equally sized uniform Ti-6Al-4V plates fabricated by traditional ingot and wrought technology.


Sign in / Sign up

Export Citation Format

Share Document