AA1050 metal matrix composites reinforced by high-entropy alloy particles via stir casting and subsequent rolling

2021 ◽  
pp. 162370
Author(s):  
Kaiguang LUO ◽  
Hanqing XIONG ◽  
Yun ZHANG ◽  
GU Hao ◽  
LI Zhide ◽  
...  
2019 ◽  
Vol 18 ◽  
pp. 2409-2414
Author(s):  
CH.V. Satyanarayanaraju ◽  
Rahul Dixit ◽  
Pooja Miryalkar ◽  
S. Karunanidhi ◽  
A. AshokKumar ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6580
Author(s):  
Sangwoo Nam ◽  
Hyung Won Lee ◽  
In-Ho Jung ◽  
Young-Min Kim

TiC-reinforced metal matrix composites were fabricated by laser cladding and FeCrCoNiAlTiC high entropy alloy powder. The heat of the laser formed a TiC phase, which was consistent with the thermodynamic calculation, and produced a coating layer without interfacial defects. TiC reinforcing particles exhibited various morphologies, such as spherical, blocky, and dendritic particles, depending on the heat input and coating depth. A dendritic morphology is observed in the lower part of the coating layer near the AISI 304 substrate, where heat is rapidly transferred. Low heat input leads to an inhomogeneous microstructure and coating depth due to the poor fluidity of molten pool. On the other hand, high heat input dissolved reinforcing particles by dilution with the substrate. The coating layer under the effective heat input of 50 J/mm2 had relatively homogeneous blocky particles of several micrometers in size. The micro-hardness value of the coating layer is over 900 HV, and the nano-hardness of the reinforcing particles and the matrix were 17 GPa and 10 GPa, respectively.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present study is to investigate the effect of alumina (Al2O3)–carbon (C) reinforcement on the properties of aluminium matrix. Aluminium matrix reinforced with Al2O3–carbon (2.5, 5, 7.5 and 10 wt.%) in equal proportion was prepared by stir casting. Phase, microstructure, EDS, density, hardness, impact strength and tensile strength of prepared samples have been investigated. X-ray diffraction reports the intermediate phase formation between the matrix and reinforcement phase due to interfacial bonding between them. Scanning electron microscopy shows that Al matrix has uniform distribution of reinforcement particles, i.e. Al2O3 and carbon. Density decreases due to variation of reinforcement because ceramic reinforcement has low density. Hardness decreases due to variation of carbon since it has soft nature. Impact strength was found to increase with addition of reinforcement. Hybrid composite of Al and 5% Al2O3 + 5% carbon reinforcement has maximum engineering and true ultimate tensile strength. It is expected that the present hybrid metal matrix composites will be useful for fabricating stock screws.


Sign in / Sign up

Export Citation Format

Share Document