Debonding characteristics of adhesively bonded carbon-epoxy composite laminates

2019 ◽  
Vol 19 ◽  
pp. 269-272
Author(s):  
Raghu Raja Pandiyan Kuppusamy
2018 ◽  
Vol 18 (3) ◽  
pp. 739-756 ◽  
Author(s):  
J Jefferson Andrew ◽  
V Arumugam ◽  
C Ramesh

This article investigates the influence of homogeneous and hybrid external patches based on glass and Kevlar plain weave woven fabrics on local bending response of adhesively bonded external patch repairs in damaged glass/epoxy composite laminates. The intent of using hybrid external patches was to combine the excellent high displacement to failure property of Kevlar fiber as a ductile reinforcement with the superior mechanical property of glass fiber as a brittle reinforcement. The undamaged normal specimens were taken as the standard specimen for evaluation of residual mechanical properties. In all hybrid patches, the proportion of Kevlar and glass fibers was equal (i.e. 50% of Kevlar and 50% of glass by volume fraction), while lay-up configurations were different. This further allowed studying the associated effects of hybridization and lay-up configuration on local bending response of the repaired laminates. All the specimens were subjected to cyclic quasi-static indentation tests with a step loading method. The indentation tests have also been monitored in real time by acoustic emission system. The acoustic emission results illustrated various damage profiles and correlates with the mechanical test results to point out the load to a transformation in damage mechanisms during indentation loading with respect to the effect of each patch material on the performance of the repaired glass/epoxy specimens. Results showed that hybridization and lay-up configurations of the external patches played a significant role on local bending response (i.e. ultimate load, stiffness, residual deformation, displacement to failure, and damage pattern) of the repaired glass/epoxy specimens. Specimens repaired using intra-ply hybrid patches showed the best local bending response.


2021 ◽  
Vol 258 ◽  
pp. 113378
Author(s):  
Kundan K. Verma ◽  
C.H. Viswarupachari ◽  
Kotresh M. Gaddikeri ◽  
S. Ramesh ◽  
S. Kumar ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 1170-1182
Author(s):  
Muhammad Razlan Zakaria ◽  
Hazizan Md Akil ◽  
Mohd Firdaus Omar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aslina Anjang Ab Rahman ◽  
...  

AbstractThe electrospray deposition method was used to deposit carbon nanotubes (CNT) onto the surfaces of woven carbon fiber (CF) to produce woven hybrid carbon fiber–carbon nanotubes (CF–CNT). Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the woven hybrid CF–CNT. The results demonstrated that CNT was successfully and homogenously distributed on the woven CF surface. Woven hybrid CF–CNT epoxy composite laminates were then prepared and compared with woven CF epoxy composite laminates in terms of their flexural and dielectric properties. The results indicated that the flexural strength, flexural modulus and dielectric constant of the woven hybrid CF–CNT epoxy composite laminates were improved up to 19, 27 and 25%, respectively, compared with the woven CF epoxy composite laminates.


Sign in / Sign up

Export Citation Format

Share Document