Design and development of high performance based engineered cementitious composite eco-friendly beams preparation: An integrated approach

2020 ◽  
Vol 27 ◽  
pp. 1299-1303
Author(s):  
Muppalla Venkata Sai Surya Pratap Chowdary ◽  
S.S. Asadi ◽  
P. Poluraju
2016 ◽  
Vol 20 (4) ◽  
pp. 491-503 ◽  
Author(s):  
Fang Yuan ◽  
Jinlong Pan ◽  
Christopher KY Leung

Engineered cementitious composite is a class of high-performance cementitious composites with pseudo-strain hardening behavior and excellent crack control capacity. Substitution of concrete with engineered cementitious composite can greatly reduce the cracking and durability problems associated with low tensile strength and brittleness of concrete and can significantly increase structural seismic resistance. In this article, a pair of beam–column joints with various matrix types has been tested under reversed cyclic loading to study the effect of substitution of concrete with engineered cementitious composite in the joint zone on the seismic behaviors of composite members. After that, a simplified constitutive model of engineered cementitious composite under cyclic loading is proposed, and the structural performance of steel reinforced engineered cementitious composite members is simulated by fiber beam elements. The accuracy of the model is verified with test data. Finally, three frame structures with different matrixes subjected to earthquake actions were numerically modeled to verify the contribution of ductile engineered cementitious composite material to structural seismic resistance. The seismic responses or failure mechanisms, deformation patterns, and energy dissipation capacities for each frame structure are analyzed and compared. The simulation results indicate that the application of engineered cementitious composite can reduce the maximum story drift ratio, and the distributions of the dissipated energy are more uniform along the building height when engineered cementitious composite is strategically used in ground columns and beam–column joints of the frame structure. The seismic performance of the reinforced engineered cementitious composite-concrete composite frame is found to be even better than the frame with all concrete replaced by engineered cementitious composite.


2020 ◽  
Vol 23 (14) ◽  
pp. 3075-3088
Author(s):  
Wei Hou ◽  
Guan Lin ◽  
Xiaomeng Li ◽  
Pandeng Zheng ◽  
Zixiong Guo

Extensive research has been conducted on the uniaxial tensile and compressive behavior of engineered cementitious composites. Despite the high tensile ductility and high toughness of engineered cementitious composites, transverse steel reinforcement is still necessary for high-performance structural members made of engineered cementitious composites. However, very limited research has been concerned with the compressive behavior of steel-confined engineered cementitious composites. This article presents the results of axial compression tests on a series of circular engineered cementitious composite columns confined with steel spirals. The test variables included the engineered cementitious composite compressive strength, the spiral pitch, and the spiral yield stress. The test results show that steel-confined engineered cementitious composites in the test columns exhibited a very ductile behavior; the steel spiral confinement contributed effectively to the enhancement of both strength and ductility of engineered cementitious composites. The test results were then interpreted by comparing them with the predictions from some existing models. It was found that the existing models previously developed for confined concrete failed to predict the compressive strength of steel-confined engineered cementitious composites with sufficient accuracy. New fitting equations for the compressive properties of steel-confined engineered cementitious composites were then obtained on the basis of the test results of this study as well as those from an existing study.


Sign in / Sign up

Export Citation Format

Share Document