Effects of chrysopogon zizanioides nano additive with palm biodiesel on engine performance and exhaust emissions

Author(s):  
S. Sai Kiran ◽  
S. Madhu ◽  
Chidambaranathan Bibin ◽  
Mebratu Markos Woldegiorgis ◽  
P. Kumran
2020 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
Sara Tayari ◽  
Reza Abedi ◽  
Ali Abedi

AbstractMicroalgae have been mentioned as a promising feedstock for biodiesel production. In this study, microalgae Chlorella vulgaris (MCV) was cultivated in a bioreactor with wastewater. After biodiesel production from MCV oil via transesterification reaction, chemical and physical properties of MCV methyl ester were evaluated with regular diesel and ASTM standard. Besides, engine performance and exhaust emissions of CI engine fuelled with the blends of diesel-biodiesel were measured. The GC-MS analysis showed that oleic and linoleic acids were the main fatty acid compounds in the MCV methyl ester. Engine test results revealed that the use of biodiesel had led to a major decrease in CO and HC emissions and a modest reduction in CO2 emissions, whereas there was a minor increase in NOx emissions. Furthermore, there was a slight decrease in the engine power and torque while a modest increase in brake specific fuel consumption which are acceptable due to exhaust emissions reduction. The experimental results illustrate considerable capabilities of applied MVC biodiesel as an alternative fuel in diesel engines to diminish the emissions.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document