A critical study and analysis of process parameters of selective laser sintering Rapid prototyping

Author(s):  
S.I.A. Qadri
2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2002 ◽  
Vol 14 (2) ◽  
pp. 100-106 ◽  
Author(s):  
G. Casalino ◽  
L. A. C. De Filippis ◽  
A. D. Ludovico ◽  
L. Tricarico

2014 ◽  
Vol 630 ◽  
pp. 318-325 ◽  
Author(s):  
Czesław Kundera ◽  
Tomasz Kozior

The article contains the results of studies concerning the effects of selected parameters of the manufacturing process of elastic bellows on their elastic properties and strength. Bellows models were made using additive technology SLS selective laser sintering, in which the material used to construct models was a polyamide PA 2200. Bellows printing process proceeded in a surface parallel to the axis of the bellows and in a surface perpendicular to it. Based on measurements of deformation coefficients of elasticity of bellows were determined, also the measure of the maximum axial force exerted by the bellows while loading the internal pressure was carried out. Comparing the measurement results a significant effect of process parameters on the flexible properties of elastic bellows and their resistance to internal pressure were determined.


2010 ◽  
Vol 43 ◽  
pp. 430-433
Author(s):  
Nai Fei Ren ◽  
Pan Wang ◽  
Yan Luo ◽  
Hui Juan Wu

The dimensional accuracy and mechanics properties of parts made by Selective Laser Sintering depend greatly on the sintering process parameters. The influence of process parameters on warping weight of parts sintered by blends of polyamide (PA12) and high density polyethylene (HDPE) was studied. The relationship between the process parameters and the warping height was presented. The surface morphology of the part and uniformity of powder mixed were analyzed by SEM. The optimum parameters of minimum warping height were obtained: preheat temperature 110°C, scan speed 300mm/s, laser power 21W, thickness of single layer 0.2mm.


2014 ◽  
Vol 902 ◽  
pp. 12-17 ◽  
Author(s):  
Ruey Tsung Lee ◽  
Fwu Hsing Liu ◽  
Ku En Ting ◽  
Sheng Lih Yeh ◽  
Wen Hsueng Lin

This research developed a feedback control system of laser compensation for the rapid prototyping (RP) machine using layer-wise slurry deposition and selective laser sintering (SLS). The slurry was prepared by silica power and silica sol with 60 and 40 wt.% with suitable rheological properties for 0.1 mm layer deposition. Four ceramics for comparison of the formability of fabricated ceramic green parts with/without the feedback control system of laser energy density for models were designed With this laser feedback control, batter quality ceramic green parts can be manufactured and the rapid prototyping machine with steady laser energy radiated on slurry layer was achieved. Experimental results validate the well performance of the measuring laser power and feedback control system.


Sign in / Sign up

Export Citation Format

Share Document