Properties of high volume coal bottom ash in concrete production

Author(s):  
Abdul Muiz Hasim ◽  
Khairul Anuar Shahid ◽  
Nur Farhayu Ariffin ◽  
Nurul Natasha Nasrudin ◽  
Muhamad Nor Syahrul Zaimi
2021 ◽  
Vol 13 (14) ◽  
pp. 8031
Author(s):  
Syakirah Afiza Mohammed ◽  
Suhana Koting ◽  
Herda Yati Binti Katman ◽  
Ali Mohammed Babalghaith ◽  
Muhamad Fazly Abdul Patah ◽  
...  

One effective method to minimize the increasing cost in the construction industry is by using coal bottom ash waste as a substitute material. The high volume of coal bottom ash waste generated each year and the improper disposal methods have raised a grave pollution concern because of the harmful impact of the waste on the environment and human health. Recycling coal bottom ash is an effective way to reduce the problems associated with its disposal. This paper reviews the current physical and chemical and utilization of coal bottom ash as a substitute material in the construction industry. The main objective of this review is to highlight the potential of recycling bottom ash in the field of civil construction. This review encourages and promotes effective recycling of coal bottom ash and identifies the vast range of coal bottom ash applications in the construction industry.


2019 ◽  
Vol 9 (17) ◽  
pp. 3620 ◽  
Author(s):  
Svetlana Pushkar

Life-cycle assessments (LCAs) were conducted to evaluate the replacement of sand with coal bottom ash (CBA) in concrete. CBA is a byproduct of coal-fueled electricity production. Sand was replaced with CBA at proportions of 0, 25, 50, 75, and 100 wt.%, and the resultant concretes were denoted as CBA0, CBA25, CBA50, CBA75, and CBA100, respectively. Two concrete mixture design methods (that resulted in different component qualities of concrete mixtures) were used: (i) Mixture with a fixed slump (MIX-fixed-SLUMP) and (ii) mixture with a fixed water/cement ratio (MIX-fixed-W/C). The ReCiPe2016 midpoint and single score (six methodological options) methods were followed to compare the environmental damage caused by the CBA-based concretes. The ReCiPe2016 results showed that replacing sand with CBA was environmentally (i) beneficial with the MIX-fixed-SLUMP design and (ii) harmful with the MIX-fixed-W/C design. Therefore, using CBA as a partial sand replacement in concrete production is a controversial issue as it highly depends on the concrete mixture design method.


Author(s):  
Mohd Haziman Wan Ibrahim ◽  
◽  
Sajjad Ali Mangi ◽  
Mohd Irwan Juki ◽  
◽  
...  

Coal Bottom Ash (CBA) is the waste material produced by coal-based power plants, particularly in Malaysia around 1.7 million tons of CBA was produced annually, which is major environmental concern. Therefore, the use of CBA as a partial replacement of cement in concrete is a possible solution for that pollution; this approach also creates a new corridor in the field of concrete production. However, this study aims to evaluate the effects of CBA as cementitious material on the concrete properties. This study incorporated 10% CBA as a cement replacement by weight method in concrete. However, concrete samples were prepared with and without CBA and immersed in water for 7, 28, 56 and 90 days. Next, the performances of concrete with and without CBA were evaluated in terms of workability, compressive strength, and rapid chloride permeability test. It was found that due to presence of CBA in concrete, workability reduces; no substantial growth in compressive strength at the early ages but substantial rise in strength was noticed after 56 days. Almost 4.7% higher strength was recorded than the control specimens at 90 days. Besides that, concrete containing CBA has lower chloride penetration as compared to the control specimen, which shows its better durability performance. It can be concluded that CBA has an enormous potential to be utilized as a cementitious material in durable concrete production.


Author(s):  
Abdul Muiz Hasim ◽  
Khairul Anuar Shahid ◽  
Nur Farhayu Ariffin ◽  
Nurul Natasha Nasrudin ◽  
Muhammad Nor Syahrul Zaimi

Author(s):  
Nor Syafiqah Ghadzali ◽  
◽  
Mohd Haziman Wan Ibrahim ◽  
Sharifah Salwa Mohd Zuki ◽  
Mohd Syahrul Hisyam Sani ◽  
...  

Recently, the deficiency of natural sand is considered one of the most important thoughtful issues in the construction industry as it is one of the raw materials of concrete. The use of industrial waste by-products as an alternative material in concrete production is one solution to natural sand depletion. Therefore, the aim of this study is to investigate the properties of the concrete containing Coal Bottom Ash (CBA) produced by coal-based power plants as sand replacement material. Initially, physical, chemical, microstructural properties like specific gravity, density, sieve analysis, X-ray fluorescence and scanning electron microscopic were investigated. Then, the optimum replacement of sand with CBA was determined based on the workability, compressive and splitting tensile test. The results displayed that the physical properties of CBA are similar to sand. Moreover, CBA was classified chemically as Class-F ash. It was found that the optimum replacement dosage of CBA with sand is 10% in which achieved the targeted/designed strength. In general, CBA has good potential to be utilized as a sand replacement material.


2017 ◽  
Vol 68 (10) ◽  
pp. 2367-2372 ◽  
Author(s):  
Ng Hooi Jun ◽  
Mirabela Georgiana Minciuna ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Tan Soo Jin ◽  
Andrei Victor Sandu ◽  
...  

Manufacturing of Portland cement consists of high volume of natural aggregates which depleted rapidly in today construction field. New substitutable material such as bottom ash replace and target for comparable properties with hydraulic or pozzolanic properties as Portland cement. This study investigates the replacement of different sizes of bottom ash into Portland cement by reducing the content of Portland cement and examined the mechanism between bottom ash (BA) and Portland cement. A cement composite developed by 10% replacement with 1, 7, 14, and 28 days of curing and exhibited excellent mechanical strength on day 28 (34.23 MPa) with 63 mm BA. The porous structure of BA results in lower density as the fineness particles size contains high specific surface area and consume high quantity of water. The morphology, mineralogical, and ternary phase analysis showed that pozzolanic reaction of bottom ash does not alter but complements and integrates the cement hydration process which facilitate effectively the potential of bottom ash to act as construction material.


J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 223-232
Author(s):  
Esperanza Menéndez ◽  
Cristina Argiz ◽  
Miguel Ángel Sanjuán

Ground coal bottom ash is considered a novel material when used in common cement production as a blended cement. This new application must be evaluated by means of the study of its pozzolanic properties. Coal bottom ash, in some countries, is being used as a replacement for natural sand, but in some others, it is disposed of in a landfill, leading thus to environmental problems. The pozzolanic properties of ground coal bottom ash and coal fly ash cements were investigated in order to assess their pozzolanic performance. Proportions of coal fly ash and ground coal bottom ash in the mixes were 100:0, 90:10, 80:20, 50:50, 0:100. Next, multicomponent cements were formulated using 10%, 25% or 35% of ashes. In general, the pozzolanic performance of the ground coal bottom ash is quite similar to that of the coal fly ash. As expected, the pozzolanic reaction of both of them proceeds slowly at early ages, but the reaction rate increases over time. Ground coal bottom ash is a promising novel material with pozzolanic properties which are comparable to that of coal fly ashes. Then, coal bottom ash subjected to an adequate mechanical grinding is suitable to be used to produce common coal-ash cements.


Sign in / Sign up

Export Citation Format

Share Document