scholarly journals Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concrete

Author(s):  
Mohd Haziman Wan Ibrahim ◽  
◽  
Sajjad Ali Mangi ◽  
Mohd Irwan Juki ◽  
◽  
...  

Coal Bottom Ash (CBA) is the waste material produced by coal-based power plants, particularly in Malaysia around 1.7 million tons of CBA was produced annually, which is major environmental concern. Therefore, the use of CBA as a partial replacement of cement in concrete is a possible solution for that pollution; this approach also creates a new corridor in the field of concrete production. However, this study aims to evaluate the effects of CBA as cementitious material on the concrete properties. This study incorporated 10% CBA as a cement replacement by weight method in concrete. However, concrete samples were prepared with and without CBA and immersed in water for 7, 28, 56 and 90 days. Next, the performances of concrete with and without CBA were evaluated in terms of workability, compressive strength, and rapid chloride permeability test. It was found that due to presence of CBA in concrete, workability reduces; no substantial growth in compressive strength at the early ages but substantial rise in strength was noticed after 56 days. Almost 4.7% higher strength was recorded than the control specimens at 90 days. Besides that, concrete containing CBA has lower chloride penetration as compared to the control specimen, which shows its better durability performance. It can be concluded that CBA has an enormous potential to be utilized as a cementitious material in durable concrete production.

2015 ◽  
Vol 12 (2) ◽  
Author(s):  
Roza Gusman

Penggunaan Abu Dasar Batubara Sebagai Pengganti Sebagian Agregat Halus pada Campuran Latasir B Terhadap Karakteristik MarshallBasic Use of Coal Ash to Replace Some Fine Aggregate on Characteristics of Mixed Latasir B MarshallRoza Gusman1 & Alik Ansyori21,2Jurusan Teknik Sipil Fakultas Teknik – Universitas Muhammadiyah MalangAlamat korespondensi : Jalan Raya Tlogomas 246 Malang 65144AbstractCoal bottom ash is the residue from the burning of coal in thermal power plants. The use of coal bottom ash as an alternative material mix pavement is one way to take advantage of these residues. This study aimed to determine the effect of the use and the quantity of coal bottom ash as partial replacement of fine aggregate characteristics that meet the requirements for mixed marshall latasir B. Partial replacement of fine aggregate with coal bottom ash is made with a variation of 5%, 10%, 15%, 20%, 25%, 30%, and 35% of the total proportion of fine aggregate. Results of the study note that the use of coal bottom ash generally improves the quality mix latasir B. Latasir mixture B which has the characteristics of the best marshal is on the basis of coal ash content of 17.2%.Keywords: latasir B asphalt mixtures, coal bottom ash, marshall characteristics. AbstrakBottom ash batubara adalah residu dari pembakaran batubara di pembangkit listrik termal . Penggunaan batubara bawah abu sebagai alternatif campuran bahan perkerasan adalah salah satu cara untuk mengambil keuntungan dari residu tersebut . Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan dan kuantitas bawah abu batubara sebagai pengganti parsial karakteristik agregat halus yang memenuhi persyaratan untuk campuran marshall latasir B. pengganti parsial agregat halus dengan bottom ash batubara dibuat dengan variasi 5 % , 10 % , 15 % , 20 % , 25 % , 30 % , dan 35 % dari total proporsi agregat halus . Hasil penelitian mencatat bahwa penggunaan bottom ash batubara umumnya meningkatkan kualitas campuran latasir B. Latasir campuran B yang memiliki karakteristik marshal terbaik adalah berdasarkan kadar abu batubara dari 17,2 % .Kata kunci : campuran aspal B latasir , bawah batubara abu , karakteristik marshall .


2020 ◽  
Vol 12 (24) ◽  
pp. 10631
Author(s):  
Safeer Abbas ◽  
Uzair Arshad ◽  
Wasim Abbass ◽  
Moncef L. Nehdi ◽  
Ali Ahmed

Each year, about 730 million tons of bottom ash is generated in coal fired power plants worldwide. This by-product can be used as partial replacement for Portland cement, favoring resource conservation and sustainability. Substantial research has explored treated and processed coal bottom ash (CBA) for possible use in the construction industry. The present research explores using local untreated and raw CBA in mitigating the alkali–silica reaction (ASR) of reactive aggregates in concrete. Mortar bar specimens incorporating various proportions of untreated CBA were tested in accordance with ASTM C1260 up to 150 days. Strength activity index (SAI) and thermal analysis were used to assess the pozzolanic activity of CBA. Specimens incorporating 20% CBA achieved SAI greater than 75%, indicating pozzolanic activity. Mixtures incorporating CBA had decreased ASR expansion. Incorporating 20% CBA in mixtures yielded 28-day ASR expansion of less than the ASTM C1260 limit value of 0.20%. Scanning electron microscopy depicted ASR induced microcracks in control specimens, while specimens incorporating CBA exhibited no microcracking. Moreover, low calcium-to-silica ratio and reduced alkali content were observed in specimens incorporating CBA owing to alkali dilution and absorption, consequently decreasing ASR expansion. The toxicity characteristics of CBA indicated the presence of heavy metals below the US-EPA limits. Therefore, using local untreated CBA in concrete as partial replacement for Portland cement can be a non-hazardous alternative for reducing the environmental overburden of cement production and CBA disposal, with the added benefit of mitigating ASR expansion and its associated costly damage, leading to sustainable infrastructure.


2015 ◽  
Vol 802 ◽  
pp. 149-154 ◽  
Author(s):  
Ali Huddin Ibrahim ◽  
Kok Keong Choong ◽  
Megat Azmi Megat Johari ◽  
Shahril Izham Md Noor ◽  
Nur Liyana Zainal ◽  
...  

The possibility of utilizing treated coal bottom ash as a partial replacement of Portland cement was examined through compressive strength test on mortar samples. A total of 16 batches of mortar mixtures with cement:sand ratio of 1:2.5 and 1:2.75 were prepared using two types of treated coal bottom ash. The chemical compositions including the unburned carbon of coal bottom ash were also analyzed. In order to remove the excess unburned carbon which will affect the potential pozzolanic properties, the coal bottom ash was heated at 550 ± 50oC and 700 ± 50°C for 60 min in an electrical furnace.The results showed that compressive strength of mortar mixtures with cement:sand ratio of 1:2.5 and 1:2.75 containing treated coal bottom ash which was heated at 550oC results in an increase in compressive strength. At 10% and 20% of treated coal bottom ash replacement levels to Portland cement, the compressive strength of the mortar mixture was significantly improved at the age of 28 days. The compressive strength of the mortar mixtures at early ages gives lower strength as compared to the plain Portland cement mortar. However, the effect of treated coal bottom ash that was heated at 700°C is to reduce the compressive strength of the mortar mixtures except for mixture with cement:sand ratio of 1:2.5 containing 10% coal bottom ash at 56 days.


An experimental study was accomplished to study the effect of replacement of both cement and sand with coal bottom ash (CBA) on the properties of the concrete. Control mix was prepared without coal bottom ash replacement and nominated as series A. The mixes of series B were prepared with20 % replacement of cement with 30 hours ground coal bottom ash (GCBA). Mixes of series C were prepared with four percentages (5,10,15,20) of CBA as partial replacement of sand. Mixes of Series D mixes were prepared as a combination of series B and C. Slump flow, compressive strength, and water permeability properties were investigated. Series D mixes showed lower workability compared to the series C mixes and control mix. Compressive strength of series D mix gained slightly higher strength compared to the control mix but lower than series C strength. Series C mixes absorbed more water compared to control mix concrete. Series D mixes achieved lower water permeability coefficient compare to series C which showed lower water permeability than the control.


Author(s):  
Nor Syafiqah Ghadzali ◽  
◽  
Mohd Haziman Wan Ibrahim ◽  
Sharifah Salwa Mohd Zuki ◽  
Mohd Syahrul Hisyam Sani ◽  
...  

Recently, the deficiency of natural sand is considered one of the most important thoughtful issues in the construction industry as it is one of the raw materials of concrete. The use of industrial waste by-products as an alternative material in concrete production is one solution to natural sand depletion. Therefore, the aim of this study is to investigate the properties of the concrete containing Coal Bottom Ash (CBA) produced by coal-based power plants as sand replacement material. Initially, physical, chemical, microstructural properties like specific gravity, density, sieve analysis, X-ray fluorescence and scanning electron microscopic were investigated. Then, the optimum replacement of sand with CBA was determined based on the workability, compressive and splitting tensile test. The results displayed that the physical properties of CBA are similar to sand. Moreover, CBA was classified chemically as Class-F ash. It was found that the optimum replacement dosage of CBA with sand is 10% in which achieved the targeted/designed strength. In general, CBA has good potential to be utilized as a sand replacement material.


2019 ◽  
Vol 8 (4) ◽  
pp. 1041-1044

This paper study the effectiveness of waste material from industrial by-product as lightweight self-cured concrete. Waste material involved in this study is coal bottom ash, oil palm boiler clinker and hydrogel from diapers. Coal bottom ash (CBA) used as a fine aggregate replacement whilst oil palm clinker (OPBC) added into the concrete mixture as partial replacement of coarse aggregate in order to produce lightweight concrete. In addition, hydrogel from disposable diapers was acted as selfcuring agent. Different percentage of CBA as the fine aggregate replacement in concrete was used with the constant value of OPBC as coarse aggregate replacement. The result shows that the concrete sample containing 100% replacement of CBA has the lightest density as compared to other samples. In terms of compressive strength, the sample containing 40% replacement of CBA has similar compressive strength to control sample with reduction of the density of 22% when compared to the control sample. It is concluded that the recycling of CBA and OPBC as replacement material in lightweight concrete has good potential and also processing of CBA and OPBC to develop nano-material are the future potential of CBA and OPBC research for energy efficiency building.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2020 ◽  
Vol 30 (4) ◽  
pp. 1-20
Author(s):  
Zbigniew Kledyński ◽  
Łukasz Krysiak

Abstract This paper discusses the effects of partial replacement of cement with fluidized bed bottom ash on the properties of mortars. The analyzed ash samples originating from four Polish power plants were separated by grain size selection into fine and coarse-grained fractions. This process leads to a creation of derivative samples of differing physical properties and, partially, phase compositions, as tested in XRD and TG analyses. Despite its high water demand, the obtained fine-grained fraction has the potential for application in cementbased composites as a reactive, pozzolanic additive. An acceptable activity index may be reached when the sulfate content is limited, implying benefits of combining the ash with low gypsum cements. The coarse-grained fraction is significantly less reactive, while a high silica and aluminate content is related to improved mechanical properties of the composite. It can, therefore, potentially be used as a quasi-inert additive or a substitute for sand.


Sign in / Sign up

Export Citation Format

Share Document