Investigate the welding of Inconel 718 and Inconel 600 in friction stir welding

Author(s):  
Prakash E ◽  
Chandrasekar G ◽  
Radha Krishnan Beemaraj ◽  
Ramesh M ◽  
Sundaresan R
2012 ◽  
Vol 724 ◽  
pp. 481-485
Author(s):  
Kuk Hyun Song ◽  
Kazuhiro Nakata

This study evaluated the microstructure and mechanical properties of friction stir welded lap joints. Inconel 600 and SS 400 as experimental materials were selected, and friction stir welding was carried out at tool rotation speed of 200 rpm and welding speed of 100 mm/min. Applying the friction stir welding was notably effective to reduce the grain size of the stir zone, as a result, the average grain size of Inconel 600 was reduced from 20 μm in the base material to 8.5 μm in the stir zone. Joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks. Also, the hook, along the Inconel 600 alloy from SS 400, was formed at advancing side, which directly affected an increase in peel strength. In this study, we systematically discussed the evolution on microstructure and mechanical properties of friction stir lap jointed Inconel 600 and SS 400.


Author(s):  
Sanjay Raj ◽  
Pankaj Biswas

Abstract The preheating system is a promising approach to decrease the axial load, improve the weld quality, and enhance the tool life during the friction stir welding of high strength material. In the present work, conventional friction stir welding (FSW) and high-frequency induction heating-assisted friction stir welding (I-FSW) systems were used to join 3 mm thick Inconel 718 plates with a WC-10%Co tool and studied their performances. The welding was carried out at a constant rotational speed of 300 rpm, including varying traverse speeds of 90 mm/min and 140 mm/min and varying preheating temperatures (310 oC, 410 oC, and 700 oC). The results show that good weld joints were possible at high traverse speed (i.e., 140 mm/min) using the I-FSW at low preheating temperature (i.e., 310 oC). Grain refinement in the weld zone with and without preheated FSW led to improved mechanical properties. The increased size of intermetallic phases and carbide particles due to induction preheating in I-FSW were most likely to be responsible for the enhancement of the weld strength. The hardness of the stir zone was increased from 250 HV to 370 HV, and the ultimate tensile strength of the I-FSW joint reaches 740 MPa, which was 98.8 % of the base material. The results also revealed that preheating affected the process temperature results lowering the axial force and frictional heat, which improved the tool life.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Daniela Lohwasser ◽  
Zhan Chen

Sign in / Sign up

Export Citation Format

Share Document