scholarly journals Multiscale Modelling of the Extracellular Matrix

2021 ◽  
pp. 100096
Author(s):  
Hua Wong ◽  
Jean-Marc Crowet ◽  
Manuel Dauchez ◽  
Sylvie Ricard-Blum ◽  
Stéphanie Baud ◽  
...  
Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


2007 ◽  
Vol 177 (4S) ◽  
pp. 421-422
Author(s):  
Ganka Nikolova ◽  
Christian O. Twiss ◽  
Hane Lee ◽  
Nelson Stanley ◽  
Janet Sinsheimer ◽  
...  

2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
B. Oberwallner ◽  
A. Brodarac ◽  
P. Anic ◽  
T. Saric ◽  
K. Bieback ◽  
...  

1997 ◽  
Vol 10 (01) ◽  
pp. 6-11 ◽  
Author(s):  
R. F. Rosenbusch ◽  
L. C. Booth ◽  
L. A. Dahlgren

SummaryEquine tendon fibroblasts were isolated from explants of superficial digital flexor tendon, subcultured and maintained in monolayers. The cells were characterized by light microscopy, electron microscopy and radiolabel studies for proteoglycan production. Two predominant cell morphologies were identified. The cells dedifferentiated toward a more spindle shape with repeated subcultures. Equine tendon fibroblasts were successfully cryopreserved and subsequently subcultured. The ability to produce proteoglycan was preserved.The isolated cells were identified as fibroblasts, based on their characteristic shape by light microscopy and ultrastructure and the active production of extracellular matrix proteins. Abundant rough endoplasmic reticulum and the production of extracellular matrix products demonstrated active protein production and export. Proteoglycans were measurable via liquid scintillation counting in both the cell-associated fraction and free in the supernatant. This model is currently being utilized to study the effects of polysulfated glycosaminoglycan on tendon healing. Future uses include studying the effects of other pharmaceuticals, such as hyaluronic acid, on tendon healing.A model was developed for in vitro investigations into tendon healing. Fibroblasts were isolated from equine superficial digital flexor tendons and maintained in monolayer culture. The tenocytes were characterized via light and electron microscopy. Proteoglycan production was measured, using radio-label techniques. The fibroblasts were cryopreserved and subsequently subcultured. The cells maintained their capacity for proteoglycan production, following repeated subculturing and cryopreservation.


1996 ◽  
Vol 75 (03) ◽  
pp. 497-502 ◽  
Author(s):  
Hadewijch L M Pekelharing ◽  
Henne A Kleinveld ◽  
Pieter F C.C.M Duif ◽  
Bonno N Bouma ◽  
Herman J M van Rijn

SummaryLp(a) is an LDL-like lipoprotein plus an additional apolipoprotein apo(a). Based on the structural homology of apo(a) with plasminogen, it is hypothesized that Lp(a) interferes with fibrinolysis. Extracellular matrix (ECM) produced by human umbilical vein endothelial cells was used to study the effect of Lp(a) and LDL on plasminogen binding and activation. Both lipoproteins were isolated from the same plasma in a single step. Plasminogen bound to ECM via its lysine binding sites. Lp(a) as well as LDL were capable of competing with plasminogen binding. The degree of inhibition was dependent on the lipoprotein donor as well as the ECM donor. When Lp(a) and LDL obtained from one donor were compared, Lp(a) was always a much more potent competitor. The effect of both lipoproteins on plasminogen binding was reflected in their effect on plasminogen activation. It is speculated that Lp(a) interacts with ECM via its LDL-like lipoprotein moiety as well as via its apo(a) moiety.


Sign in / Sign up

Export Citation Format

Share Document