Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence

2013 ◽  
Vol 244 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Hongguang Xi ◽  
Lixia Duan ◽  
Marc Turcotte
Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 831-853 ◽  
Author(s):  
Ina Budde ◽  
Leif Steil ◽  
Christian Scharf ◽  
Uwe Völker ◽  
Erhard Bremer

The soil bacterium Bacillus subtilis frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of B. subtilis to low temperature. Propagation of B. subtilis in minimal medium at 15 °C triggered the induction of 279 genes and the repression of 301 genes in comparison to cells grown at 37 °C. The analysis thus revealed profound adjustments in the overall gene expression profile in chill-adapted cells. Important transcriptional changes in low-temperature-grown cells comprise the induction of the SigB-controlled general stress regulon, the induction of parts of the early sporulation regulons (SigF, SigE and SigG) and the induction of a regulatory circuit (RapA/PhrA and Opp) that is involved in the fine-tuning of the phosphorylation status of the Spo0A response regulator. The analysis of chill-stress-repressed genes revealed reductions in major catabolic (glycolysis, oxidative phosphorylation, ATP synthesis) and anabolic routes (biosynthesis of purines, pyrimidines, haem and fatty acids) that likely reflect the slower growth rates at low temperature. Low-temperature repression of part of the SigW regulon and of many genes with predicted functions in chemotaxis and motility was also noted. The proteome analysis of chill-adapted cells indicates a major contribution of post-transcriptional regulation phenomena in adaptation to low temperature. Comparative analysis of the previously reported transcriptional responses of cold-shocked B. subtilis cells with this data revealed that cold shock and growth in the cold constitute physiologically distinct phases of the adaptation of B. subtilis to low temperature.


AIP Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 065302 ◽  
Author(s):  
Liang Wang ◽  
Mei Huang ◽  
Xiaole Yue ◽  
Wantao Jia ◽  
Wei Xu

2016 ◽  
Vol 198 (9) ◽  
pp. 1451-1463 ◽  
Author(s):  
Kelly A. Flanagan ◽  
Joseph D. Comber ◽  
Elizabeth Mearls ◽  
Colleen Fenton ◽  
Anna F. Wang Erickson ◽  
...  

ABSTRACTSpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell duringBacillus subtilissporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σG. Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σG. ThecsfBgene is ordinarily transcribed in the forespore only by the early-acting sigma factor σF. However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28,csfBwas also aberrantly transcribed later by σG, the very target of CsfB inhibition. This regulation ofcsfBby SpoIIQ Tyr-28 is specific, given that the expression of other σF-dependent genes was unaffected. Moreover, we identified a conserved element within thecsfBpromoter region that is both necessary and sufficient for SpoIIQ Tyr-28-mediated inhibition. These results indicate that SpoIIQ is a bifunctional protein that not only generally promotes σGactivity in the forespore as a channel component but also specifically maximizes σGactivity as part of a gene regulatory circuit that represses σG-dependent expression of its own inhibitor, CsfB. Finally, we demonstrate that SpoIIQ Tyr-28 is required for the proper localization and stability of the SpoIIE phosphatase, raising the possibility that these two multifunctional proteins cooperate to fine-tune developmental gene expression in the forespore at late times.IMPORTANCECellular development is orchestrated by gene regulatory networks that activate or repress developmental genes at the right time and place. Late gene expression in the developingBacillus subtilisspore is directed by the alternative sigma factor σG. The activity of σGrequires a channel apparatus through which the adjacent mother cell provides substrates that generally support gene expression. Here we report that the channel protein SpoIIQ also specifically maximizes σGactivity as part of a previously unknown regulatory circuit that prevents σGfrom activating transcription of the gene encoding its own inhibitor, the anti-sigma factor CsfB. The discovery of this regulatory circuit significantly expands our understanding of the gene regulatory network controlling late gene expression in the developingB. subtilisspore.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
M. Bartolini ◽  
S. Cogliati ◽  
D. Vileta ◽  
C. Bauman ◽  
L. Rateni ◽  
...  

ABSTRACTBacterial biofilms are important in natural settings, biotechnology, and medicine. However, regulation of biofilm development and its persistence in different niches is complex and only partially understood. One key step during the biofilm life cycle is dispersal, when motile cells abandon the mature biofilm to spread out and colonize new niches. Here, we show that in the model bacteriumBacillus subtilisthe general stress transcription factor SigB is essential for halting detrimental overgrowth of mature biofilm and for triggering dispersal when nutrients become limited. Specifically, SigB-deficient biofilms were larger than wild-type biofilms but exhibited accelerated cell death, significantly greater sensitivity to different stresses, and reduced dispersal. Interestingly, the signal detected by SigB to limit biofilm growth was transduced through the RsbP-dependent metabolic arm of the SigB regulatory cascade, which in turn positively controlled expression of SinR, the master regulator of biofilm formation and cell motility. This novel SigB-SinR regulatory circuit might be important in controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.IMPORTANCEBiofilms are crucial for bacterial survival, adaptation, and dissemination in natural, industrial, and medical systems. Sessile cells embedded in the self-produced extracellular matrix of the biofilm benefit from a division of labor and are protected from environmental insults. However, as the biofilm ages, cells become stressed because of overcrowding, starvation, and accumulation of waste products. How does the sessile biofilm community sense and respond to stressful conditions? Here, we show that inBacillus subtilis, the transcription factors SigB and SinR control whether cells remain in or leave a biofilm when metabolic conditions become unfavorable. This novel SigB-SinR regulatory circuit might be important for controlling the fitness of biofilms (either beneficial or harmful) in diverse environments.


2000 ◽  
Vol 182 (2) ◽  
pp. 555-560 ◽  
Author(s):  
Patricia Fajardo-Cavazos ◽  
Wayne L. Nicholson

ABSTRACT UV resistance of bacterial endospores derives from a unique DNA photochemistry in which the major UV photoproduct is the thymine dimer 5-thyminyl-5,6-dihydrothymine (spore photoproduct [SP]) instead of cyclobutane pyrimidine dimers. Repair of SP during spore germination is due in large part to the activity of the enzyme SP lyase encoded bysplB, the second cistron of the splAB operon. Expression of the splAB operon in Bacillus subtilis is transcriptionally activated by the EςGform of RNA polymerase during morphological stage III in the developing forespore compartment, and SP lyase is packaged into the dormant spore. In addition to temporal and compartmental control of splABexpression, a second regulatory circuit which modulates the level of expression of splB-lacZ fusions without altering their developmental timing or compartmentalization is reported here. This second regulatory circuit involves the negative action of thesplA gene product, a 79-amino-acid protein with approximately 50% similarity and 17% identity to TRAP, the tryptophan RNA-binding attenuation protein from B. subtilis andBacillus pumilus.


Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
N Padilla-Montaño ◽  
IL Bazzocchi ◽  
L Moujir

2018 ◽  
Vol 22 (02) ◽  
pp. 82-89
Author(s):  
Friedrich von Rheinbaben ◽  
Oliver Riebe ◽  
Johanna Köhnlein ◽  
Sebastian Werner

ZusammenfassungZentrales Bauteil des Genius® 90 Therapie Systems ist der sogenannte Genius-Tank, dem die frische Dialyseflüssigkeit entnommen und in den die verbrauchte Lösung nach der Dialyse zurückgeführt wird. Daher kommt der sicheren Aufbereitung des Systems eine besondere Bedeutung zu. Hierfür wird ein Aufbereitungsverfahren unter Verwendung von UV-Licht in Kombination mit einem chemischen Desinfektionsmittel angewendet. Ziel der hier beschriebenen Untersuchung war es, die Wirkungsbreite und Wirkungstiefe dieses Aufbereitungsverfahrens unter praxisnahen Phase-3-Bedingungen zu ermitteln. Dazu wurde das Gerät mit Mikroorganismen und Viren künstlich kontaminiert und die Wirkung der einzelnen Verfahrensschritte ermittelt. Im Gegensatz zu der üblichen Vorgehensweise praxisnaher Untersuchungen machen Aufbereitungsverfahren medizinischer Geräte unter Phase-3-Kriterien meist eine neuartige Arbeitsweise erforderlich – im Falle der hier vorgestellten Untersuchung sogar die Konstruktion eines speziellen Geräts zur Platzierung von Keimträgen im Genius-Tank. Im Ergebnis konnte gezeigt werden, dass bereits UV-Licht allein sowie in Kombination mit einem chemischen Desinfektionsmittel unter praxisnahen Bedingungen eine sichere Wirksamkeit gegen Bakterien (Pseudomonas aeruginosa) und bakterielle Sporen (Bacillus subtilis), Schimmelpilze (Aspergillus brasiliensis) und Viren (Murines Parvovirus) besitzt.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
L Moujir ◽  
L de León ◽  
IL Bazzocchi

2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document