Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization

Measurement ◽  
2012 ◽  
Vol 45 (3) ◽  
pp. 344-353 ◽  
Author(s):  
Hamdi Aouici ◽  
Mohamed Athmane Yallese ◽  
Kamel Chaoui ◽  
Tarek Mabrouki ◽  
Jean-François Rigal
2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


2013 ◽  
Vol 581 ◽  
pp. 176-181 ◽  
Author(s):  
Ildikó Maňková ◽  
Jozef Beňo ◽  
Marek Vrabel'

Hard turning provides an alternative to grinding in some finishing operations. This paper deals with analysis of part surface finishing when turning hardened steel heat-treated on hardness of 46, 55 and 60 HRC with mixed oxide ceramic inserts. Average surface roughness Ra has been widely used in industry it is known that the single parameter Ra is inadequate to define the functionality of a surface. Two different surfaces with similar values of Ra can behave differently under loading conditions. The surface profile 2D and 3D parameters are assessed. The influence of workpiece hardness on surface roughness parameters and cutting force components is investigated. Results show that finish hard turning with mixed ceramic tool produces surface profile comparable to those produced by grinding.


2015 ◽  
Author(s):  
André Faraon Rodrigues ◽  
Cássio Magalhães dos Reis ◽  
Matheus Nunes Duran ◽  
Guilherme Cortelini da Rosa ◽  
André João de Souza

Author(s):  
Dilbag Singh ◽  
P. Venkateswara Rao

Due to technical and economical factors, hard turning is competing successfully with the grinding process in the industries. However, due to the large number of variables and their interactions affecting the hard turning process, the process control becomes complex. So, the selection of optimal machining conditions for good surface quality, in hard turning, is of great concern in the manufacturing industries these days. In the present work, experimental investigation has been conducted to study the effect of the tool geometry (effective rake angle and nose radius) and cutting conditions (cutting speed and feed) on the surface roughness during the hard turning of the bearing steel with mixed ceramic inserts. Central composite design was employed for experimentation. The first and the second order mathematical models were developed in terms of machining parameters by using the Response Surface Methodology (RSM) on the basis of the experimental results. Results show that all the factors and their interactions were significantly influencing the surface roughness. Analysis of Variance (ANOVA) indicated that the second order surface roughness model was significant. Further, the surface roughness prediction model has been optimized by using genetic algorithms (GA). The genetic algorithm program gives minimum values of surface roughness and their respective optimal machining conditions (cutting conditions and tool geometry).


2019 ◽  
Vol 9 (5) ◽  
pp. 842 ◽  
Author(s):  
Danil Pimenov ◽  
Amauri Hassui ◽  
Szymon Wojciechowski ◽  
Mozammel Mia ◽  
Aristides Magri ◽  
...  

In face milling one of the most important parameters of the process quality is the roughness of the machined surface. In many articles, the influence of cutting regimes on the roughness and cutting forces of face milling is considered. However, during flat face milling with the milling width B lower than the cutter’s diameter D, the influence of such an important parameter as the relative position of the face mill towards the workpiece and the milling kinematics (Up or Down milling) on the cutting force components and the roughness of the machined surface has not been sufficiently studied. At the same time, the values of the cutting force components can vary significantly depending on the relative position of the face mill towards the workpiece, and thus have a different effect on the power expended on the milling process. Having studied this influence, it is possible to formulate useful recommendations for a technologist who creates a technological process using face milling operations. It is possible to choose such a relative position of the face mill and workpiece that will provide the smallest value of the surface roughness obtained by face milling. This paper shows the influence of the relative position of the face mill towards the workpiece and milling kinematics on the components of the cutting forces, the acceleration of the machine spindle in the process of face milling (considering the rotation of the mill for a full revolution), and on the surface roughness obtained by face milling. Practical recommendations on the assignment of the relative position of the face mill towards the workpiece and the milling kinematics are given.


2020 ◽  
Vol 18 (4) ◽  
pp. 643-648
Author(s):  
Asset Rakishev ◽  
Almat Sagitov ◽  
Bakytzhan Donenbaev ◽  
Karibek Sherov ◽  
Sayagul Tussupova ◽  
...  

The authors developed the design of a special multi-blade rotary-friction tool. The multi-blade rotary-friction tool is equipped with two cupped cutters - heating and cutting. The heating cupped cutter is made of medium-carbon structural steel of any brand, and the cutting cupped cutter is made of steel R6M5. The final formation of the treated surface and its quality is provided by the cutting cupped cutter. This article presents the results of the calculation of the strength of the cutting cupped cutter multi-blade rotary friction tool.As a result, the following were established: when processing steels 30HGSA cutting force components reach the maximum value than when processing materials 40HN2MA, St.45, and St.3c (calm); strength and rigidity of the cutting cupped cutter is sufficient for processing optimal cutting conditions: nsp = 1000 rpm; S = 0.42 mm/rot; t = 1.0 mm.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1109 ◽  
Author(s):  
Andrzej Matras ◽  
Wojciech Zębala

This work deals with technological considerations required to optimize the cutting data and tool path pattern for finishing the milling of free-form surfaces made of steel in a hardened state. In terms of technological considerations, factors such as feed rate, workpiece geometry, tool inclination angles (lead and tilt angles) and surface roughness are taken into account. The proposed method is based on calculations of the cutting force components and surface roughness measurements. A case study presented in the paper is based on the AISI H13 steel, with hardness 50 HRC and milling with a cubic boron nitride (CBN) tool. The results of the research showed that by modifications of the feed value based on the currently machined cross-sectional area, it is possible to control the cutting force components and surface roughness. During the process optimization, the 9% and 15% increase in the machining process efficiency and the required surface roughness were obtained according to the tool inclination angle and feed rate optimization procedure, respectively.


Sign in / Sign up

Export Citation Format

Share Document