INFLUENCE ON THE FEED-RATE AND MQF IN THE SURFACE ROUGHNESS AND CUTTING FORCE COMPONENTS DURING THE AISI 420C TURNING WITH STANDARD AND WIPER TOOLS.

Author(s):  
André Faraon Rodrigues ◽  
Cássio Magalhães dos Reis ◽  
Matheus Nunes Duran ◽  
Guilherme Cortelini da Rosa ◽  
André João de Souza
Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1109 ◽  
Author(s):  
Andrzej Matras ◽  
Wojciech Zębala

This work deals with technological considerations required to optimize the cutting data and tool path pattern for finishing the milling of free-form surfaces made of steel in a hardened state. In terms of technological considerations, factors such as feed rate, workpiece geometry, tool inclination angles (lead and tilt angles) and surface roughness are taken into account. The proposed method is based on calculations of the cutting force components and surface roughness measurements. A case study presented in the paper is based on the AISI H13 steel, with hardness 50 HRC and milling with a cubic boron nitride (CBN) tool. The results of the research showed that by modifications of the feed value based on the currently machined cross-sectional area, it is possible to control the cutting force components and surface roughness. During the process optimization, the 9% and 15% increase in the machining process efficiency and the required surface roughness were obtained according to the tool inclination angle and feed rate optimization procedure, respectively.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2019 ◽  
Vol 9 (5) ◽  
pp. 842 ◽  
Author(s):  
Danil Pimenov ◽  
Amauri Hassui ◽  
Szymon Wojciechowski ◽  
Mozammel Mia ◽  
Aristides Magri ◽  
...  

In face milling one of the most important parameters of the process quality is the roughness of the machined surface. In many articles, the influence of cutting regimes on the roughness and cutting forces of face milling is considered. However, during flat face milling with the milling width B lower than the cutter’s diameter D, the influence of such an important parameter as the relative position of the face mill towards the workpiece and the milling kinematics (Up or Down milling) on the cutting force components and the roughness of the machined surface has not been sufficiently studied. At the same time, the values of the cutting force components can vary significantly depending on the relative position of the face mill towards the workpiece, and thus have a different effect on the power expended on the milling process. Having studied this influence, it is possible to formulate useful recommendations for a technologist who creates a technological process using face milling operations. It is possible to choose such a relative position of the face mill and workpiece that will provide the smallest value of the surface roughness obtained by face milling. This paper shows the influence of the relative position of the face mill towards the workpiece and milling kinematics on the components of the cutting forces, the acceleration of the machine spindle in the process of face milling (considering the rotation of the mill for a full revolution), and on the surface roughness obtained by face milling. Practical recommendations on the assignment of the relative position of the face mill towards the workpiece and the milling kinematics are given.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


Measurement ◽  
2012 ◽  
Vol 45 (3) ◽  
pp. 344-353 ◽  
Author(s):  
Hamdi Aouici ◽  
Mohamed Athmane Yallese ◽  
Kamel Chaoui ◽  
Tarek Mabrouki ◽  
Jean-François Rigal

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2196
Author(s):  
Marcin Płodzień ◽  
Łukasz Żyłka ◽  
Paweł Sułkowicz ◽  
Krzysztof Żak ◽  
Szymon Wojciechowski

High feed Milling is a new milling method, which allows to apply high feed rates and increase machining efficiency. The method utilizes face cutters with a very small entering angle, of about 10°–20°. Thus, the cut layer cross-section is different than in traditional milling. In order to examine the high feed milling (HFM), experimental tests were conducted, preceded by an analysis of cutting zones when milling with an HF face cutter. The face milling tests of 42CrMo4 steel with the use of an HF cutter characterized by an entering angle, dependent on axial depth of cut ap and insert radius r values, as well as with a conventional face cutter with the entering angle of 45° were performed. The study focused on analyzing the vibration amplitude, cutting force components in the workpiece coordinate system, and surface roughness. The experimental tests proved, that when milling with constant cut layer thickness, the high feed cutter allowed to obtain twice the cutting volume in comparison with the conventional face cutter. However, higher machining efficiency resulted in an increase in cutting force components. Furthermore, the results indicate significantly higher surface roughness and higher vibration amplitudes when milling with the HF cutter.


2016 ◽  
Vol 61 (3) ◽  
pp. 1379-1384 ◽  
Author(s):  
W. Habrat ◽  
M. Motyka ◽  
K. Topolski ◽  
J. Sieniawski

Abstract Nanocristalline pure titanium in comparison to microcrystalline titanium is characterized by better mechanical properties which influence its wider usability. The aim of the research was to evaluate whether the grain size of pure titanium (micro- and nanocrystalline) has influence on the cutting force components and the surface roughness in the milling process. Models of cutting force components for both materials were prepared and differences between the results were examined. The feed rate effect on selected parameters of surface roughness after milling of micro- and nanocrystalline pure titanium was determined.


2021 ◽  
pp. 089270572199320
Author(s):  
Prakhar Kumar Kharwar ◽  
Rajesh Kumar Verma

The new era of engineering society focuses on the utilization of the potential advantage of carbon nanomaterials. The machinability facets of nanocarbon materials are passing through an initial stage. This article emphasizes the machinability evaluation and optimization of Milling performances, namely Surface roughness (Ra), Cutting force (Fc), and Material removal rate (MRR) using a recently developed Grey wolf optimization algorithm (GWOA). The Taguchi theory-based L27 orthogonal array (OA) was employed for the Machining (Milling) of polymer nanocomposites reinforced by Multiwall carbon nanotube (MWCNT). The second-order polynomial equation was intended for the analysis of the model. These mathematical models were used as a fitness function in the GWOA to predict machining performances. The ANOVA outcomes efficiently explore the impact of machine parameters on Milling characteristics. The optimal combination for lower surface roughness value is 1.5 MWCNT wt.%, 1500 rpm of spindle speed, 50 mm/min of feed rate, and 3 mm depth of cut. For lower cutting force, 1.0 wt.%, 1500 rpm, 90 mm/min feed rate and 1 mm depth of cut and the maximize MRR was acquired at 0.5 wt.%, 500 rpm, 150 mm/min feed rate and 3 mm depth of cut. The deviation of the predicted value from the experimental value of Ra, Fc, and MRR are found as 2.5, 6.5 and 5.9%, respectively. The convergence plot of all Milling characteristics suggests the application potential of the GWO algorithm for quality improvement in a manufacturing environment.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

Sign in / Sign up

Export Citation Format

Share Document