scholarly journals Calculation of the multi-blade rotary-friction tool's cutting cupped cutter to strength in the Ansys WB surrounding

2020 ◽  
Vol 18 (4) ◽  
pp. 643-648
Author(s):  
Asset Rakishev ◽  
Almat Sagitov ◽  
Bakytzhan Donenbaev ◽  
Karibek Sherov ◽  
Sayagul Tussupova ◽  
...  

The authors developed the design of a special multi-blade rotary-friction tool. The multi-blade rotary-friction tool is equipped with two cupped cutters - heating and cutting. The heating cupped cutter is made of medium-carbon structural steel of any brand, and the cutting cupped cutter is made of steel R6M5. The final formation of the treated surface and its quality is provided by the cutting cupped cutter. This article presents the results of the calculation of the strength of the cutting cupped cutter multi-blade rotary friction tool.As a result, the following were established: when processing steels 30HGSA cutting force components reach the maximum value than when processing materials 40HN2MA, St.45, and St.3c (calm); strength and rigidity of the cutting cupped cutter is sufficient for processing optimal cutting conditions: nsp = 1000 rpm; S = 0.42 mm/rot; t = 1.0 mm.

2021 ◽  
pp. 51-54
Author(s):  

The influence of non-metallic inclusions on the main indicators of steel machinability is investigated. The influence of non-metallic inclusions on the cutting force is determined. Generalized formulas for calculating tool life, cutting speed and cutting force components are proposed. Keywords: machinability, productivity, structural steel, non-metallic inclusions. [email protected]


Measurement ◽  
2012 ◽  
Vol 45 (3) ◽  
pp. 344-353 ◽  
Author(s):  
Hamdi Aouici ◽  
Mohamed Athmane Yallese ◽  
Kamel Chaoui ◽  
Tarek Mabrouki ◽  
Jean-François Rigal

2000 ◽  
Vol 123 (2) ◽  
pp. 196-205 ◽  
Author(s):  
Jae-Woong Youn ◽  
Min-Yang Yang

The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining systems. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper. The static components of cutting force have been used to detect flank wear and the dynamic components of cutting force have been analyzed to detect crater wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the relationships between normalized cutting forces and cutting conditions are established. According to the proposed method, the static and dynamic force components could provide the effective means to detect flank and crater wear for varying cutting conditions in turning operation.


2018 ◽  
Author(s):  
Xingbang Chen ◽  
Ashutosh Khatri ◽  
J. Ma ◽  
Muhammad P. Jahan

In this paper, numerical investigation of the effects of cutting conditions in slot up milling of Ti-6Al-4V is conducted using Finite Element Method (FEM). Experiments are conducted to validate the FEM models. The validated models are then used to predict the cutting force components when different cutting conditions are applied. It is found that cutting speed, feed rate, and depth of cut have strong influence on cutting force components and tool temperature. This research provides insightful guidance for selecting optimal cutting conditions for slot milling of Ti-6Al-4V.


2017 ◽  
Vol 261 ◽  
pp. 36-43
Author(s):  
Jan Řehoř ◽  
Jaroslava Fulemová ◽  
Alena Vagaská ◽  
Miroslav Gombár ◽  
Katarina Monkova

The article deals with the experimental investigation of cutting conditions from the view of force load during machining high alloyed tool steel EŠ 419556 (standard by Škoda a.s. Pilsen, based on DIN 1.2326) at high speed milling. The aim of presented research is investigation of the most favourable contact and cutting conditions to minimize the power load of the cutting edge. Processing of measurement results within presented investigation was focused only on the components of cutting force FC (tangent) and FCN (normal) that adequately characterize the cutting process. The experiments were also carried out at cutting depth (ap) changing during high speed milling. The obtained results are presented in the paper by means of graphs that clearly show the behaviour of cutting force components at given conditions.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

Sign in / Sign up

Export Citation Format

Share Document