A sensor-to-segment calibration method for motion capture system based on low cost MIMU

Measurement ◽  
2019 ◽  
Vol 131 ◽  
pp. 490-500 ◽  
Author(s):  
Namchol Choe ◽  
Hongyu Zhao ◽  
Sen Qiu ◽  
Yongguk So
2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Katherina Bujang ◽  
Ahmad Faiz Ahmad Nazri ◽  
Ahmad Fidaudin Ahmad Azam ◽  
Jamaluddin Mahmud

Microsoft Kinect has been identified as a potential alternative tool in the field of motion capture due to its simplicity and low cost. To date, the application and potential of Microsoft Kinect has been vigorously explored especially for entertainment and gaming purposes. However, its motion capture capability in terms of repeatability and reproducibility is still not well addressed. Therefore, this study aims to explore and develop a motion capture system using Microsoft Kinect; focusing on developing the interface, motion capture protocol as well as measurement analysis. The work is divided into several stages which include installation (Microsoft Kinect and MATLAB); parameters and experimental setup, interface development; protocols development; motion capture; data tracking and measurement analysis. The results are promising, where the variances are found to be less than 1% for both repeatability and reproducibility analysis. This proves that the current study is significant and the gained knowledge could contribute


2020 ◽  
Vol 14 ◽  
Author(s):  
Grady W. Jensen ◽  
Patrick van der Smagt ◽  
Egon Heiss ◽  
Hans Straka ◽  
Tobias Kohl

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1750
Author(s):  
Amartya Ganguly ◽  
Gabriel Rashidi ◽  
Katja Mombaur

Over the last few years, the Leap Motion Controller™ (LMC) has been increasingly used in clinical environments to track hand, wrist and forearm positions as an alternative to the gold-standard motion capture systems. Since the LMC is marker-less, portable, easy-to-use and low-cost, it is rapidly being adopted in healthcare services. This paper demonstrates the comparison of finger kinematic data between the LMC and a gold-standard marker-based motion capture system, Qualisys Track Manager (QTM). Both systems were time synchronised, and the participants performed abduction/adduction of the thumb and flexion/extension movements of all fingers. The LMC and QTM were compared in both static measuring finger segment lengths and dynamic flexion movements of all fingers. A Bland–Altman plot was used to demonstrate the performance of the LMC versus QTM with Pearson’s correlation (r) to demonstrate trends in the data. Only the proximal interphalangeal joint (PIP) joint of the middle and ring finger during flexion/extension demonstrated acceptable agreement (r = 0.9062; r = 0.8978), but with a high mean bias. In conclusion, the study shows that currently, the LMC is not suitable to replace gold-standard motion capture systems in clinical settings. Further studies should be conducted to validate the performance of the LMC as it is updated and upgraded.


2007 ◽  
Vol 23 (3) ◽  
pp. 224-229 ◽  
Author(s):  
James C. Martin ◽  
Steven J. Elmer ◽  
Robert D. Horscroft ◽  
Nicholas A.T. Brown ◽  
Barry B. Shultz

The purpose of this study was to develop and evaluate an alternative method for determining the position of the anterior superior iliac spine (ASIS) during cycling. The approach used in this study employed an instrumented spatial linkage (ISL) system to determine the position of the ASIS in the parasagittal plane. A two-segment ISL constructed using aluminum segments, bearings, and digital encoders was tested statically against a calibration plate and dynamically against a video-based motion capture system. Four well-trained cyclists provided data at three pedaling rates. Statically, the ISL had a mean horizontal error of 0.03 ± 0.21 mm and a mean vertical error of −0.13 ± 0.59 mm. Compared with the video-based motion capture system, the agreement of the location of the ASIS had a mean error of 0.30 ± 0.55 mm for the horizontal dimension and −0.27 ± 0.60 mm for the vertical dimension. The ISL system is a cost-effective, accurate, and valid measure for two-dimensional kinematic data within a range of motion typical for cycling.


Author(s):  
Abhinav Chadda ◽  
Wenjuan Zhu ◽  
Ming C. Leu ◽  
Xiaoqing F. Liu

This paper describes the design, implementation and evaluation of a low-cost motion capture system with support of interfaces for practically any types of cameras. We present the system’s software architecture design, development of software to implement and integrate several existing algorithms, and effective approaches to address practical issues such as object calibration and synchronizing the real-world and virtual-world coordinate frames. The motion capture system is developed to work with active markers and all the processing is done by the software on a mid-level workstation. With the Firefly MV cameras used, the developed system is capable of working at 60 frames per second, having the ability to simultaneously track the positions and orientations of five objects, with latency averaging about 15 ms, and with an average measurement error of about 0.65 mm between the distance of each pair of four LEDs mounted on a target that is placed 1.5–3.5 m from the cameras.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4799
Author(s):  
Calvin Young ◽  
Sarah DeDecker ◽  
Drew Anderson ◽  
Michele L. Oliver ◽  
Karen D. Gordon

Wrist motion provides an important metric for disease monitoring and occupational risk assessment. The collection of wrist kinematics in occupational or other real-world environments could augment traditional observational or video-analysis based assessment. We have developed a low-cost 3D printed wearable device, capable of being produced on consumer grade desktop 3D printers. Here we present a preliminary validation of the device against a gold standard optical motion capture system. Data were collected from 10 participants performing a static angle matching task while seated at a desk. The wearable device output was significantly correlated with the optical motion capture system yielding a coefficient of determination (R2) of 0.991 and 0.972 for flexion/extension (FE) and radial/ulnar deviation (RUD) respectively (p < 0.0001). Error was similarly low with a root mean squared error of 4.9° (FE) and 3.9° (RUD). Agreement between the two systems was quantified using Bland–Altman analysis, with bias and 95% limits of agreement of 3.1° ± 7.4° and −0.16° ± 7.7° for FE and RUD, respectively. These results compare favourably with current methods for occupational assessment, suggesting strong potential for field implementation.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6437
Author(s):  
Sebastian Dudzik

The paper presents research on methods of a wheeled mobile robot localization using an optical motion capture system. The results of localization based on the model of forward kinematics and odometric measurements were compared. A pure pursuit controller was used to control the robot’s behaviour in the path following tasks. The paper describes a motion capture system based on infrared cameras, including the calibration method. In addition, a method for determining the accuracy of robot location using the motion capture system, based on the Hausdorff distance, was proposed. As a result of the research it was found that the Hausdorff distance is very useful in determining the accuracy of localization of wheeled robots, especially those described by differential drive kinematics.


2011 ◽  
Author(s):  
Erica Nocerino ◽  
Sebastiano Ackermann ◽  
Silvio Del Pizzo ◽  
Fabio Menna ◽  
Salvatore Troisi

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tjerk Zult ◽  
Jonathan Allsop ◽  
Juan Tabernero ◽  
Shahina Pardhan

Abstract3-D gait analysis is the gold standard but many healthcare clinics and research institutes would benefit from a system that is inexpensive and simple but just as accurate. The present study examines whether a low-cost 2-D motion capture system can accurately and reliably assess adaptive gait kinematics in subjects with central vision loss, older controls, and younger controls. Subjects were requested to walk up and step over a 10 cm high obstacle that was positioned in the middle of a 4.5 m walkway. Four trials were simultaneously recorded with the Vicon motion capture system (3-D system) and a video camera that was positioned perpendicular to the obstacle (2-D system). The kinematic parameters (crossing height, crossing velocity, foot placement, single support time) were calculated offline. Strong Pearson’s correlations were found between the two systems for all parameters (average r = 0.944, all p < 0.001). Bland-Altman analysis showed that the agreement between the two systems was good in all three groups after correcting for systematic biases related to the 2-D marker positions. The test-retest reliability for both systems was high (average ICC = 0.959). These results show that a low-cost 2-D video system can reliably and accurately assess adaptive gait kinematics in healthy and low vision subjects.


Sign in / Sign up

Export Citation Format

Share Document