Macro-meso failure characteristics of circular cavity-contained granite under unconventional cyclic loads: A lab-scale testing

Measurement ◽  
2021 ◽  
pp. 110608
Author(s):  
Y. Wang ◽  
C. Zhu ◽  
Z.Y. Song ◽  
S. Gong
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Wenzhong Zheng ◽  
Dehong Wang ◽  
Yanzhong Ju

An experimental research was carried out to investigate the seismic performance and shear strength of reactive powder concrete interior beam-column joints subjected to reverse cyclic loads. Four beam-column joint specimens were cast and tested in the investigation. The failure characteristics, deformational properties, ductility, and energy dissipation of reinforced reactive powder concrete interior beam-column joints were analyzed in this paper. The shear strength of joints was calculated according to the GB5001-2010 and ACI 318-14. The results shows that reactive powder concrete beam-column joints have a higher shear-cracking strength and shear carrying capacity and strength degradation and rigidity degradation are not notable. Additionally, the use of RPC for beam-column joints can reduce the congestion of stirrups in joints core. The shear force in the RPC joint is mainly carried by the diagonal strut mechanism; the design expression of ACI 318-14 can be used for calculating the shear strength of RPC joints, which has a safety margin of 22%∼38% in this test.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


A study review of aging polymer composite materials (PCM) under different heat-moisture conditions or water exposure with the sequential or parallel influence of static or cyclic loads in laboratory conditions is presented. The influence of tension and bending loads is compared. Conditions of the different load influence on parameters of carbon-reinforced plastics and glass-reinforced plastics are discussed. Equipment and units for climatic tests of PCM under loading are described. Simulation examples of indices of mechanical properties of PCM under the influence of environment and loads are shown.


2014 ◽  
Vol 501-504 ◽  
pp. 1096-1103
Author(s):  
Hong Xiao Wu ◽  
Hao Zhe Xing ◽  
Zhi Fang Yan

The blast impact dynamic experiment of reinforced concrete rectangular plate with simply supported boundary conditions was performed using explosion pressure simulator. With 3-D FEM software LS-DYNA, the separate solid models of concrete and steel were established and 3-D FEM dynamic analysis of the experiment process was carried out. Compared calculation results to experiment results synthetically, the damage mechanism and failure characteristics of reinforced concrete plate under explosion impact loading condition were got and it is also verified that the H-J-C model can approximately simulate the concrete properties well under explosion impact loading condition.


Author(s):  
Minghao Yi ◽  
Liang Wang ◽  
Congmeng Hao ◽  
Qingquan Liu ◽  
Zhenyang Wang

AbstractThe purpose of underground methane drainage technology is to prevent methane disasters and enable the efficient use of coal mine methane (CMM), and the sealing depth is a key factor that affects the performance of underground methane drainage. In this work, the layouts of in-seam and crossing boreholes are considered to analyze the stress distribution and failure characteristics of roadway surrounding rock through a numerical simulation and field stress investigation to determine a reasonable sealing depth. The results show that the depths of the plastic and elastic zones in two experimental coal mines are 16 and 20 m respectively. Borehole sealing minimizes the air leakage through the fractures around the roadway when the sealing material covers the failure and plastic zones, and the field test results for CMM drainage at different sealing depths indicate that the CMM drainage efficiency increases with increasing sealing depth but does not change once the sealing depth exceeds the plastic zone. Moreover, sealing in the high-permeability roadway surrounding rock does not have a strong influence on the borehole sealing performance. Considering these findings, a new CMM drainage system for key sealing in the low-permeability zone was developed that is effective for improving the CMM drainage efficiency and prolonging the high-concentration CMM drainage period. The proposed approach offers a valuable quantitative analysis method for selecting the optimum sealing parameters for underground methane drainage, thereby improving considerably the drainage and utilization rates of CMM.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4092
Author(s):  
Kamil Bacharz ◽  
Barbara Goszczyńska

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.


Sign in / Sign up

Export Citation Format

Share Document