scholarly journals Reduction of Salmonella spp. populations in Italian salami during production process and high pressure processing treatment: Validation of processes to export to the U.S.

Meat Science ◽  
2019 ◽  
Vol 157 ◽  
pp. 107869 ◽  
Author(s):  
Paolo Bonilauri ◽  
Maria Silvia Grisenti ◽  
Paolo Daminelli ◽  
Giuseppe Merialdi ◽  
Mattia Ramini ◽  
...  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Roberta Taddei ◽  
Federica Giacometti ◽  
Lia Bardasi ◽  
Paolo Bonilauri ◽  
Mattia Ramini ◽  
...  

In this study the effect of the application of High Pressure Treatment (HPP) combined with four different manufacturing processes on the inactivation of Listeria innocua, used as a surrogate for L. monocytogenes, in artificially contaminated coppa samples was evaluated in order to verify the most suitable strategy to meet the Listeria inactivation requirements needed for the exportation of dry-cured meat in the U.S. Fresh anatomical cuts intended for coppa production were supplied by four different delicatessen factories located in Northern Italy. Raw meat underwent experimental contamination with Listeria innocua using a mixture of 5 strains. Surface contamination of the fresh anatomical cuts was carried out by immersion into inoculum containing Listeria spp. The conditions of the HPP treatment were: pressure 593 MPa, time 290 seconds, water treatment temperature 14°C. Listeria innocua was enumerated on surface and deep samples post contamination, resting, ripening and HPP treatment. The results of this study show how the reduction of the microbial load on coppa during the production process did not vary among three companies (P>0.05) ranging from 3.73 to 4.30 log CFU/g, while it was significantly different (P<0.01) for the fourth company (0.92 log CFU/g). HPP treatment resulted in a significant (P<0.01) deep decrease of L.innocua count with values ranging between 1.63-3.54 log CFU/g with no significant differences between companies. Regarding superficial contamination, HPP treatment resulted significant (P<0.01) only in Coppa produced by two companies. The results highlight that there were processes less effective to inhibit the pathogen; in particular for company D an increase of L. innocua count was shown during processing and HPP alone cannot be able to in reaching the Listeria inactivation requirements needed for exportation of dry-cured meat in the U.S. According to the data reported in this paper, HPP treatment increases the ability of the manufacturing process of coppa in reducing Listeria count with the objective of a lethality treatment


2011 ◽  
Vol 181 (2-4) ◽  
pp. 350-353 ◽  
Author(s):  
Alexa C. Rosypal ◽  
Anne M. Zajac ◽  
George J. Flick ◽  
Dwight D. Bowman ◽  
David S. Lindsay

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Roberta Taddei ◽  
Federica Giacometti ◽  
Lia Bardasi ◽  
Paolo Bonilauri ◽  
Mattia Ramini ◽  
...  

The aim of the study was to investigate the combined effect of the manufacturing process followed by HPP treatment on the inactivation of Salmonella spp. in artificially contaminated coppa samples, in order to verify the ability of the combined processes to achieve the objective of a 5-log reduction of Salmonella spp. needed for exportation to the U.S. Fresh anatomical cuts intended for coppa production were supplied by four different delicatessen factories located in Northern Italy. Raw meat underwent experimental contamination with Salmonella spp. using a mixture of 3 strains. Surface contamination of the fresh anatomical cuts was carried out by immersion into inoculum containing Salmonella spp. The conditions of the HPP treatment were: pressure 593 MPa, time 290 seconds, water treatment temperature 14°C. Surface and deep samples were performed post contamination (T0), end of the cold phase (T1), end of process (Tend), and after HPP treatment (postHPP) and Salmonella spp. Enumerated. The results of this study show a significant reduction of Salmonella spp. all through the production process (P<0.01) for all companies, followed by an additional reduction of bacterial counts due to HPP treatment (P<0.01), both in superficial and deep contaminations (P<0.01). The superficial overall reduction resulted of 1.58 to 5.04 log CFU/g during the production process. HPP treatment resulted in a significant (P<0.01) superficial and deep decrease in Salmonella spp. enumeration varying from 0.61 to 4.01 log and from 1.49 to 4.13 log. According to the data presented in this study, only the combined approach of coppa manufacturing process followed by HPP treatment always led to a 5-log reduction of Salmonella spp. required by USDA/FSIS guidelines.


2020 ◽  
Vol 44 (7) ◽  
Author(s):  
Hambali Nor Hasni ◽  
Pei Chen Koh ◽  
Mohd Adzahan Noranizan ◽  
Putri Noor Faizah Megat Mohd Tahir ◽  
Azizah Mohamad ◽  
...  

Author(s):  
Chao Tan ◽  
Dongsheng Yang ◽  
Saibo Yu ◽  
Ke Li ◽  
Haifeng Tan ◽  
...  

Summary After a high-pressure processing (HPP) treatment sensory evaluation of flue-cured tobacco showed modifications. There was no significant difference (P > 0.05) between the routine chemical components (total sugar, reducing sugar, nicotine, and total nitrogen) of flue-cured tobacco after high-pressure processing treatment (HPP sample) and that of an untreated control group (CG). An overall judgement, which can be made from the observations of scanning electron microscopy (SEM), X-ray computed microtomography (micro-CT) and transmission electron microscopy (TEM), is that HPP could compress the inner tunnel and tissue gap in a flue-cured tobacco leaf. However, the ultrastructure, such as the cellular cytoskeleton, would not be changed. Compared with CG, the apparent density of the HPP sample rose by 19.3%, while the true density only rose by 1.4%. This also explained that the main effect of high-pressure processing on flue-cured tobacco was microstructure compression rather than compression on the ultrastructure level. The differences between the lamina (leaf-shaped) sample, which were caused by high-pressure processing, were reflected in terahertz time-domain spectroscopy (THz-TDS), simultaneous thermal analysis (STA), and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). When the same tests were carried out using a sample that was milled to a powder, however, these differences were nearly removed. The milling process destroyed most of the microstructure of the flue-cured tobacco lamina; therefore, the results of THz-TDS, STA, and Py-GC/MS confirmed the hypothesis: That 400 MPa high-pressure processing treatment minimally changes the ultrastructure of flue-cured tobacco and only changes its relatively larger microstructure.


Food Control ◽  
2015 ◽  
Vol 57 ◽  
pp. 41-47 ◽  
Author(s):  
Shiowshuh Sheen ◽  
Jennifer Cassidy ◽  
Butch Scullen ◽  
Joseph Uknalis ◽  
Christopher Sommers

2021 ◽  
Vol 107 ◽  
pp. 31-37
Author(s):  
Rubén Agregán ◽  
Paulo E.S. Munekata ◽  
Wangang Zhang ◽  
Jian Zhang ◽  
Cristina Pérez-Santaescolástica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document