A time-varying friction moment calculation method of an angular contact ball bearing with the waviness error

2020 ◽  
Vol 148 ◽  
pp. 103799 ◽  
Author(s):  
Jing Liu ◽  
Xinbin Li ◽  
Shizhao Ding ◽  
Ruikun Pang
Author(s):  
Yongzhen Liu ◽  
Yimin Zhang

In response to the fact that not all rolling balls are laden when the angular contact ball bearing working under the condition with certain combined loads especially when the axial preload is not large enough, an analytical method for the determination of the time-varying stiffness of angular contact ball bearing considering the effect of time-varying number of laden balls and load distribution is proposed in this paper. According to the definition of the stiffness, the time-varying stiffness under different sets of combined loads is obtained by the implicit function derivation method. Only the principal diagonal elements of the stiffness matrix are studied for the sake of simplicity. Several numerical examples are simulated and the simulation results indicate that the time-varying number of laden balls and load distribution have a significant effect on the stiffness. The period of the time-varying stiffness is consistent with the time required for the cage to rotate the angle between the adjacent rolling balls. The calculation of the ball bearing quasi-static model and the analytical method for the determination of the stiffness is verified by the existing references.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


Author(s):  
Yongzhen Liu ◽  
Yimin Zhang

When the ball bearing serving under the combined loading conditions, the ball will roll in and out of the loaded zone periodically. Therefore the bearing stiffness will vary with the position of the ball, which will cause vibration. In order to reveal the vibration mechanism, the quasi static model without raceway control hypothesis is modeled. A two-layer nested iterative algorithm based on Newton–Raphson (N-R) method with dynamic declined factors is presented. The effect of the dispersion of bearing parameters and the installation errors on the time-varying carrying characteristics of the ball-raceway contact and the bearing stiffness are investigated. Numerical simulation illustrates that besides the load and the rotating speed, the dispersion of bearing parameters and the installation errors have noticeable effect on the ball-raceway contact load, ball-inner raceway contact state and bearing stiffness, which should be given full consideration during the process of design and fault diagnosis for the rotor-bearing system.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

This paper studies the stiffness characteristics of preloaded duplex angular contact ball bearings. First, a five degrees-of-freedom (5DOF) quasi-static model of the preloaded duplex angular contact ball bearing is established based on the Jones bearing model. Three bearing configurations (face-to-face, back-to-back, and tandem arrangements) and two preload mechanisms (constant pressure preload and fixed position preload) are included in the proposed model. Subsequently, the five-dimensional stiffness matrix of the preloaded duplex angular contact ball bearing is derived analytically. Then, an experimental setup is developed to measure the radial stiffness and the angular stiffness of duplex angular contact ball bearings. The simulated results match well with those from experiments, which prove the validity of the proposed model. Finally, the effects of bearing configuration, preload mechanism, and unloaded contact angle on the angular stiffness and the cross-coupling are studied systematically.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Jing Liu ◽  
Yimin Shao ◽  
W. D. Zhu

Vibration characteristics of a deep groove ball bearing caused by a localized surface defect are greatly affected by defect sizes, such as the length, width, and depth. However, effects of the defect depth, the time-varying contact stiffness between the ball and defect, and the relationship between the time-varying contact stiffness and defect sizes have not been considered in previous defect models. In this work, a new defect model considering a new force–deflection relationship is presented to replace the Hertzian force–deflection relationship to describe the ball-line contact between the ball and defect edge. Both the time-varying displacement impulse and time-varying contact stiffness are considered. The relationship between the time-varying contact stiffness and defect sizes is obtained. Effects of defect sizes on the vibrations of the deep groove ball bearing, especially the defect depth that cannot be described by previous defect models, are investigated. The simulation results are compared with those from the previous defect models. The results show that the model developed can predict a more realistic impulse caused by a localized surface defect for dynamic simulation of the deep groove ball bearing. An experimental investigation is also presented to validate the proposed model.


2016 ◽  
Vol 104 ◽  
pp. 287-302 ◽  
Author(s):  
Seung-Wook Kim ◽  
Kibong Kang ◽  
Kichan Yoon ◽  
Dong-Hoon Choi

Sign in / Sign up

Export Citation Format

Share Document