Design and testing of a high-speed treadmill to measure ground reaction forces at the limit of human gait

2015 ◽  
Vol 37 (9) ◽  
pp. 892-897 ◽  
Author(s):  
Matthew W. Bundle ◽  
Michael O. Powell ◽  
Laurence J. Ryan
2001 ◽  
Vol 204 (11) ◽  
pp. 1979-1989 ◽  
Author(s):  
Wallace O. Bennett ◽  
Rachel S. Simons ◽  
Elizabeth L. Brainerd

SUMMARY The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion during walking. The second, supported by EMG data from lizards during relatively high-speed locomotion, suggests that these muscles function primarily to bend the body during locomotion, not to resist torsional forces. To determine whether the results from D. ensatus hold for another salamander, we recorded lateral hypaxial muscle EMGs synchronized with body and limb kinematics in the tiger salamander Ambystoma tigrinum. In agreement with results from aquatic locomotion in D. ensatus, all four layers of lateral hypaxial musculature were found to show synchronous EMG activity during swimming in A. tigrinum. Our findings for terrestrial locomotion also agree with previous results from D. ensatus and support the torsion resistance hypothesis for terrestrial locomotion. We observed asynchronous EMG bursts of relatively high intensity in the lateral and medial pairs of hypaxial muscles during walking in tiger salamanders (we call these ‘α-bursts’). We infer from this pattern that the more lateral two layers of oblique hypaxial musculature, Mm. obliquus externus superficialis (OES) and obliquus externus profundus (OEP), are active on the side towards which the trunk is bending, while the more medial two layers, Mm. obliquus internus (OI) and transversus abdominis (TA), are active on the opposite side. This result is consistent with the hypothesis proposed for D. ensatus that the OES and OEP generate torsional moments to counteract ground reaction forces generated by forelimb support, while the OI and TA generate torsional moments to counteract ground reaction forces from hindlimb support. However, unlike the EMG pattern reported for D. ensatus, a second, lower-intensity burst of EMG activity (‘β-burst’) was sometimes recorded from the lateral hypaxial muscles in A. tigrinum. As seen in other muscle systems, these β-bursts of hypaxial muscle coactivation may function to provide fine motor control during locomotion. The presence of asynchronous, relatively high-intensity α-bursts indicates that the lateral hypaxial muscles generate torsional moments during terrestrial locomotion, but it is possible that the balance of forces from both α- and β-bursts may allow the lateral hypaxial muscles to contribute to lateral bending of the body as well.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Taeyong Sim ◽  
Hyunbin Kwon ◽  
Seung Eel Oh ◽  
Su-Bin Joo ◽  
Ahnryul Choi ◽  
...  

In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a wavelet neural network (WNN) and principal component analysis-mutual information (PCA-MI). For this, the prediction model estimated GRFs and GRMs with three different gait speeds (slow, normal, and fast groups) and healthy/pathological gait patterns (healthy and adolescent idiopathic scoliosis (AIS) groups). Model performance was validated using correlation coefficients (r) and the normalized root mean square error (NRMSE%) and was compared to the prediction accuracy of the previous methods using the same dataset. As a result, the performance of the GRF and GRM prediction model proposed in this study (slow group: r = 0.840–0.989 and NRMSE% = 10.693–15.894%; normal group: r = 0.847–0.988 and NRMSE% = 10.920–19.216%; fast group: r = 0.823–0.953 and NRMSE% = 12.009–20.182%; healthy group: r = 0.836–0.976 and NRMSE% = 12.920–18.088%; and AIS group: r = 0.917–0.993 and NRMSE% = 7.914–15.671%) was better than that of the prediction models suggested in previous studies for every group and component (p < 0.05 or 0.01). The results indicated that the proposed model has improved performance compared to previous prediction models.


1996 ◽  
Vol 12 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Stephen P. Messier ◽  
Walter H. Ettinger ◽  
Thomas E. Doyle ◽  
Timothy Morgan ◽  
Margaret K. James ◽  
...  

The purpose of our study was to examine the association between obesity and gait mechanics in older adults with knee osteoarthritis (OA). Subjects were 101 older adults (25 males and 76 females) with knee OA. High-speed video analysis and a force platform were used to record sagittal view lower extremity kinematic data and ground reaction forces. Increased body mass index (BMI) was significantly related to both decreases in walking velocity and knee maximum extension. There were no significant relationships between BMI and any of the hip or ankle kinematic variables. BMI was directly related to vertical force minimum and maximum values, vertical impulse, and loading rate. Increases in braking and propulsive forces were significantly correlated with increased BMI. Maximum medially and laterally directed ground reaction forces were positively correlated with BMI. Our results suggests that, in subjects with knee OA, obesity is associated with an alteration in gait.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249657
Author(s):  
Fabian Hoitz ◽  
Vinzenz von Tscharner ◽  
Jennifer Baltich ◽  
Benno M. Nigg

Human gait is as unique to an individual as is their fingerprint. It remains unknown, however, what gait characteristics differentiate well between individuals that could define the uniqueness of human gait. The purpose of this work was to determine the gait characteristics that were most relevant for a neural network to identify individuals based on their running patterns. An artificial neural network was trained to recognize kinetic and kinematic movement trajectories of overground running from 50 healthy novice runners (males and females). Using layer-wise relevance propagation, the contribution of each variable to the classification result of the neural network was determined. It was found that gait characteristics of the coronal and transverse plane as well as medio-lateral ground reaction forces provided more information for subject identification than gait characteristics of the sagittal plane and ground reaction forces in vertical or anterior-posterior direction. Additionally, gait characteristics during the early stance were more relevant for gait recognition than those of the mid and late stance phase. It was concluded that the uniqueness of human gait is predominantly encoded in movements of the coronal and transverse plane during early stance.


Author(s):  
Christian D. Remy ◽  
Darryl G. Thelen

Ground reaction forces are the driving element of human gait. They are — in the form of forceplate measures — included in virtually all inverse dynamic analyses. While it is possible to base forward dynamic analyses on such measurements, it is preferable to model the foot-floor interactions such that simulations can be performed independent of experimental data. Such a representation then facilitates the use of simulations to predict how movement would change in response to an impairment or intervention.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 873
Author(s):  
Gaspare Pavei ◽  
Dario Cazzola ◽  
Antonio La Torre ◽  
Alberto E. Minetti

Race walking has been theoretically described as a walking gait in which no flight time is allowed and high travelling speed, comparable to running (3.6–4.2 m s−1), is achieved. The aim of this study was to mechanically understand such a “hybrid gait” by analysing the ground reaction forces (GRFs) generated in a wide range of race walking speeds, while comparing them to running and walking. Fifteen athletes race-walked on an instrumented walkway (4 m) and three-dimensional GRFs were recorded at 1000 Hz. Subjects were asked to performed three self-selected speeds corresponding to a low, medium and high speed. Peak forces increased with speeds and medio-lateral and braking peaks were higher than in walking and running, whereas the vertical peaks were higher than walking but lower than running. Vertical GRF traces showed two characteristic patterns: one resembling the “M-shape” of walking and the second characterised by a first peak and a subsequent plateau. These different patterns were not related to the athletes’ performance level. The analysis of the body centre of mass trajectory, which reaches its vertical minimum at mid-stance, showed that race walking should be considered a bouncing gait regardless of the presence or absence of a flight phase.


Author(s):  
Zhang Li ◽  
Yuegang Tan ◽  
Ping Wu ◽  
Shun Zeng

The spine plays important roles in the quadruped locomotion. These effects not only stand out in high-speed gait but also function in low-speed gait, especially the transition gait – trotting gait. In order to investigate the effects of the spine on the motion performance of the quadruped trotting, the spine with two joints is applied into the structure of the quadruped robot. This structure is inspired from the analyses for the canine, which imitates the configuration of thoracic vertebra, front lumbar vertebra and hind lumbar vertebra. Different from the quadruped robot with the passive spine or the active spine by inputting position, a compliant control is applied to the spinal joints. The feature of force control not only possesses the soft feature of the passive spine but also has the advantage of enlarging the motion ability. In the simulation process, a large amount of analyses are carried out including the influence of the control parameters of the controlled spine, the comparison with the quadruped robot with rigid torso and the gait simulation when the robot moves on the flat ground and across an obstacle. The results reveal that the controlled spine has an excellent compliant effect on the interaction with the ground. It contributes to reducing the ground reaction forces; meanwhile, the compliant effect is beneficial for improving the stability. By establishing the prototype robot and performing the motion experiment, the compliant effect of the spine is proven effective.


Sign in / Sign up

Export Citation Format

Share Document