An Energy Harvesting System for Time-Varying Energy Transducers with FOCV based Dynamic and Adaptive MPPT for 30  nW to 4  mW of Input Power Range

2021 ◽  
pp. 105080
Author(s):  
Gaurav Saini ◽  
Maryam Shojaei Baghini
2016 ◽  
Vol 3 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Tiago Moura ◽  
Nuno Borges de Carvalho ◽  
Pedro Pinho

In this work, a high-efficiency radio-frequency energy-harvesting system that takes use of the Portuguese Digital Television signal (750–758 MHz) to obtain DC power is proposed. To be useful, it is optimized to operate at low-power conditions. For the rectifier, three different solutions are presented: a single-series diode, a single-shunt diode, and a voltage-doubler configuration. The efficiency is similar for the three rectifiers – about 54% with a sine-wave excitation and −10.5 dBm of input power. Field measurements with the voltage-doubler have shown 63% efficiency for the same input power.


2021 ◽  
Vol 20 ◽  
pp. 244-248
Author(s):  
Chinmoy Bharali ◽  
Manash Pratim Sarma

A high frequency rectifier is the core of a RF energy harvesting system. It should offer a very good efficiency at low input power levels and to obtain that compensation of threshold voltage is a very important aspect. A threshold compensation scheme for MOSFETS for RF rectifier applicable in RF energy harvesting system is presented in this paper. The switching of the MOSFET is improved with overall enhancement of output rise time of the system. The design emphasis is to have a simplified circuit without the requirement of any external source so as to achieve self-sustainability in the true sense. The rectifier circuit is derived from the basic Dickson charge pump model and is evaluated using 45nm CMOS process. The design has utilized Metal Oxide Semiconductor Field Effect Transistor instead of basic diodes which ensures low power along with fabrication feasibility. The maximum measured PCE of the design is obtained to be 33% at 4dBm input power level at 500Mhz frequency with 1 Kilo Ohm load resistance. The output transient response rise time has been measured to be 85ns at 500MHz and 50.10ns at 1Ghz.


Nano Energy ◽  
2020 ◽  
Vol 74 ◽  
pp. 104839
Author(s):  
Karim Rawy ◽  
Ruchi Sharma ◽  
Hong-Joon Yoon ◽  
Usman Khan ◽  
Sang-Woo Kim ◽  
...  

Author(s):  
Minh Thuy Le ◽  
Van Duc Ngo ◽  
Thanh Tung Nguyen ◽  
Quoc Cuong Nguyen

Abstract In this study, we present a comprehensive dual-band ambient radio-frequency (RF) energy harvesting system, consisting of rectenna and power management circuit, to harvest energy from 2.45 and 5.8 GHz Wi-Fi. The rectenna employs a metamaterial antenna based on a split-ring resonator, which possesses omni-directional radiation pattern at both frequencies and compact size (0.18λ × 0.25λ at 2.45 GHz). The dual-band rectifier yields the highest efficiency of 42% at 2.45 GHz and 1 dBm input power, 30% at 5.8 GHz and − 7 dBm input power. The maximum RF-DC efficiency for each band is 72% at − 5 dBm and 27% at − 2 dBm, respectively. The power management circuit, consisting of a storing capacitor and a boost converter, is integrated to produce a stable, sufficient output voltage. The energy harvesting system, with its comprehensiveness, is suitable for supplying low-power wireless sensor nodes for indoor applications.


Sign in / Sign up

Export Citation Format

Share Document