Sodium alginate–gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity

2011 ◽  
Vol 375 (1-2) ◽  
pp. 304-312 ◽  
Author(s):  
Yifan Li ◽  
Huiping Jia ◽  
Qinglai Cheng ◽  
Fusheng Pan ◽  
Zhongyi Jiang
Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
María González Martínez ◽  
Estéban Hélias ◽  
Gilles Ratel ◽  
Sébastien Thiéry ◽  
Thierry Melkior

Biomass preheating in torrefaction at an industrial scale is possible through a direct contact with the hot gases released. However, their high water-content implies introducing moisture (around 20% v/v) in the torrefaction atmosphere, which may impact biomass thermochemical transformation. In this work, this situation was investigated for wheat straw, beech wood and pine forest residue in torrefaction in two complementary experimental devices. Firstly, experiments in chemical regime carried out in a thermogravimetric analyzer (TGA) showed that biomass degradation started from lower temperatures and was faster under a moist atmosphere (20% v/v water content) for all biomass samples. This suggests that moisture might promote biomass components’ degradation reactions from lower temperatures than those observed under a dry atmosphere. Furthermore, biomass inorganic composition might play a role in the extent of biomass degradation in torrefaction in the presence of moisture. Secondly, torrefaction experiments on a lab-scale device made possible to assess the influence of temperature and residence time under dry and 100% moist atmosphere. In this case, the difference in solid mass loss between dry and moist torrefaction was only significant for wheat straw. Globally, an effect of water vapor on biomass transformation through torrefaction was observed (maximum 10%db), which appeared to be dependent on the biomass type and composition.


Author(s):  
S. H. Kim ◽  
K. B. Shim ◽  
C. S. Kim ◽  
J. T. Chou ◽  
T. Oshima ◽  
...  

The influence of water vapor in air on power generation characteristic of solid oxide fuel cells was analyzed by measuring cell voltage at a constant current density, as a function of water vapor concentration at 800°C and 1000°C. Cell voltage change was negligible at 1000°C, while considerable voltage drop was observed at 800°C accelerated at high water vapor concentrations of 20 wt % and 40 wt %. It is considered that La2O3 formed on the (La0.8Sr0.2)0.98MnO3 surface, which is assumed to be the reason for a large voltage drop.


RSC Advances ◽  
2014 ◽  
Vol 4 (78) ◽  
pp. 41551-41560 ◽  
Author(s):  
Chengling Jiang ◽  
Zhiliang Wang ◽  
Xueqin Zhang ◽  
Xiaoqun Zhu ◽  
Jun Nie ◽  
...  

The formation mechanism polyelectrolyte complex nanofibers during the process of freeze drying.


2020 ◽  
Vol 59 (51) ◽  
pp. 22163-22172
Author(s):  
Yitong Ding ◽  
Qian Zhou ◽  
Aichun Han ◽  
Hongxun Zhou ◽  
Rong Chen ◽  
...  

2018 ◽  
Vol 175 ◽  
pp. 01001
Author(s):  
Hu Xiang-lei ◽  
Wang Hong-jun ◽  
Gao Ying

According to the climatic characteristics, the paper investigates relation between waterproof and air permeability of inorganic insulated decorative panel. The paper believes there are two main problems in the waterproof of inorganic insulated decorative panel, one is the gap is a weak link for waterproof as some weather proofing silicone sealants have poor elastic modulus, the other is the failure of construction details causes partial waterproofing failure. The composite panel system is best supplied in a complete set by the system supplier, which is a main comprehensive solution to the waterproofing problem of the composite panel. Through analyzing software simulation and experimental construction, the paper puts forward suggestion that hot summer and cold winter areas should take practical technical measures, including the use of the protective layer with high water vapor flux density or the installation of exhaust plugs in the outer wall base, or setting water vapor escaping channel such as PVC exhaust plug in the glue seam, in the actual project.


Sign in / Sign up

Export Citation Format

Share Document