Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end)

2019 ◽  
Vol 585 ◽  
pp. 67-80 ◽  
Author(s):  
Alessandra Imbrogno ◽  
Andrea I. Schäfer
2001 ◽  
Vol 1 (5-6) ◽  
pp. 39-47
Author(s):  
Y. Matsui ◽  
A. Yuasa ◽  
F. Colas

The effects of operational modes on the removal of a synthetic organic chemical (SOC) in natural water by powdered activated carbon (PAC) during ultrafiltration (UF) were studied, through model simulations and experiments. The removal percentage of the trace SOC was independent of its influent concentration for a given PAC dose. The minimum PAC dosage required to achieve a desired effluent concentration could quickly be optimized from the C/C0 plot as a function of the PAC dosage. The cross-flow operation was not advantageous over the dead-end regarding the SOC removal. Added PAC was re-circulated as a suspension in the UF loop for only a short time even under the cross-flow velocity of gt; 1.0 m/s. The cross-flow condition did not contribute much to the suspending of PAC. The pulse PAC addition at the beginning of a filtration cycle resulted in somewhat better SOC removal than the continuous PAC addition. The increased NOM loading on PAC which was dosed in a pulse and stayed longer in the UF loop could possibly further decrease the adsorption rate.


Desalination ◽  
2017 ◽  
Vol 421 ◽  
pp. 127-134 ◽  
Author(s):  
Maqsud R. Chowdhury ◽  
Jian Ren ◽  
Kevin Reimund ◽  
Jeffrey R. McCutcheon

2020 ◽  
Vol 2020 (0) ◽  
pp. 0158
Author(s):  
Kalimuthu SELVAM ◽  
Yosuke KOMATSU ◽  
Anna SCIAZKO ◽  
Shozo KANEKO ◽  
Naoki SHIKAZONO

1994 ◽  
Vol 87 (1-2) ◽  
pp. 35-46 ◽  
Author(s):  
K.J. Kim ◽  
A.G. Fane ◽  
R. Ben Aim ◽  
M.G. Liu ◽  
G. Jonsson ◽  
...  

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Vladimir Riazanski ◽  
Gerardo Mauleon ◽  
Kilean Lucas ◽  
Samuel Walker ◽  
Adriana M. Zimnicka ◽  
...  

AbstractExtracellular vesicles (EVs) are cell-derived membranous structures carrying transmembrane proteins and luminal cargo. Their complex cargo requires pH stability in EVs while traversing diverse body fluids. We used a filtration-based platform to capture and stabilize EVs based on their size and studied their pH regulation at the single EV level. Dead-end filtration facilitated EV capture in the pores of an ultrathin (100 nm thick) and nanoporous silicon nitride (NPN) membrane within a custom microfluidic device. Immobilized EVs were rapidly exposed to test solution changes driven across the backside of the membrane using tangential flow without exposing the EVs to fluid shear forces. The epithelial sodium-hydrogen exchanger, NHE1, is a ubiquitous plasma membrane protein tasked with the maintenance of cytoplasmic pH at neutrality. We show that NHE1 identified on the membrane of EVs is functional in the maintenance of pH neutrality within single vesicles. This is the first mechanistic description of EV function on the single vesicle level.


2022 ◽  
Vol 301 ◽  
pp. 113872
Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Kirubakaran Velswamy ◽  
Arthanareeswaran Gangasalam ◽  
Ahmad Fauzi Ismail ◽  
Pei Sean Goh ◽  
...  

1998 ◽  
Vol 37 (10) ◽  
pp. 135-146 ◽  
Author(s):  
Akira Yuasa

Microfiltration (MF) and ultrafiltration (UF) pilot plants were operated to produce drinking water from surface water from 1992 to 1996. Microfiltration was combined with pre-coagulation by polyaluminium chloride and was operated in a dead-end mode using hollow fiber polypropylene and monolith type ceramic membranes. Ultrafiltration pilot was operated in both cross-flow and dead-end modes using hollow fiber cellulose acetate membrane and was combined occasionally with powdered activated carbon (PAC) and granular activated carbon (GAC) adsorption. Turbidity in the raw water varied in the range between 1 and 100 mg/L (as standard Kaolin) and was removed almost completely in all MF and UF pilot plants to less than 0.1 mg/L. MF and UF removed metals such as iron, manganese and aluminium well. The background organics in the river water measured as KMnO4 demand varied in the range between 3 and 16 mg/L. KMnO4 demand decreased to less than 2 mg/L and to less than 3 mg/L on the average by the coagulation-MF process and the sole UF process, respectively. Combination of PAC or GAC adsorption with UF resulted in an increased removal of the background organics and the trihalomethanes formation potential as well as the micropollutants such as pesticides. Filtration flux was controlled in the range between 1.5 and 2.5 m/day with the trans-membrane pressure less than 100 kPa in most cases for MF and UF. The average water recovery varied from 99 to 85%.


2012 ◽  
Author(s):  
Wan Ramli Wan Daud

Although ultrafiltration and hyperfiltration have replaced many liquid phase separation equipment, both are still considered as “non–unit operation” processes because the sizing of both equipments could not be calculated using either the equilibrium stage, or the rate–based methods. Previous design methods using the dead–end and complete–mixing models are unsatisfactory because the dead–end model tends to underestimate the membrane area, due to the use of the feed concentration in the driving force, while the complete–mixing model tends to overestimate the membrane area, due to the use of a more concentrated rejection concentration in the driving force. In this paper, cross–flow models for both ultrafiltration and hyperfiltration are developed by considering mass balance at a differential element of the cross–flow module, and then integrating the expression over the whole module to get the module length. Since the modeling is rated–based, the length of both modules could be expressed as the product of the height of a transfer unit (HTU), and the number of transfer unit (NTU). The solution of the integral representing the NTU of ultrafiltration is found to be the difference between two exponential integrals (Ei(x)) while that representing the NTU of hyperfiltration is found to be the difference between two hypergeometric functions. The poles of both solutions represent the flux extinction curves of ultrafiltration and hyperfiltration. The NTU for ultrafiltration is found to depend on three parameters: the rejection R, the recovery S, and the dimensionless gel concentration Cg. For any given Cg and R, the recovery, S, is limited by the corresponding flux extinction curve. The NTU for hyperfiltration is found to depend on four parameters: the rejection R, the recovery S, the polarization β, and the dimensionless applied pressure difference ψ. For any given ψ and R, the recovery, S, is limited by the corresponding flux extinction curve. The NTU for both ultrafiltration and hyperfiltration is found to be generally small and less than unity but increases rapidly to infinity near the poles due to flux extinction. Polarization is found to increase the NTU and hence the length and membrane area of the hollow fiber module for hyperfiltration. Key words: Ultrafiltration; hyperfiltration; reverse osmosis; hollow fiber module design; crossflow model; number of transfer unit; height of a transfer unit


Sign in / Sign up

Export Citation Format

Share Document