scholarly journals Intrinsic bipolar membrane characteristics dominate the effects of flow orientation and external pH-profile on the membrane voltage

2021 ◽  
pp. 119686
Author(s):  
R. Sharifian ◽  
M.A. Blommaert ◽  
M. Bremer ◽  
R.M. Wagterveld ◽  
D.A. Vermaas
2021 ◽  
Vol 118 (22) ◽  
pp. e2026587118
Author(s):  
Tohru Minamino ◽  
Yusuke V. Morimoto ◽  
Miki Kinoshita ◽  
Keiichi Namba

The proton motive force (PMF) consists of the electric potential difference (Δψ), which is measured as membrane voltage, and the proton concentration difference (ΔpH) across the cytoplasmic membrane. The flagellar protein export machinery is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase ring complex consisting of FliH, FliI, and FliJ. ATP hydrolysis by the FliI ATPase activates the export gate complex to become an active protein transporter utilizing Δψ to drive proton-coupled protein export. An interaction between FliJ and a transmembrane ion channel protein, FlhA, is a critical step for Δψ-driven protein export. To clarify how Δψ is utilized for flagellar protein export, we analyzed the export properties of the export gate complex in the absence of FliH and FliI. The protein transport activity of the export gate complex was very low at external pH 7.0 but increased significantly with an increase in Δψ by an upward shift of external pH from 7.0 to 8.5. This observation suggests that the export gate complex is equipped with a voltage-gated mechanism. An increase in the cytoplasmic level of FliJ and a gain-of-function mutation in FlhA significantly reduced the Δψ dependency of flagellar protein export by the export gate complex. However, deletion of FliJ decreased Δψ-dependent protein export significantly. We propose that Δψ is required for efficient interaction between FliJ and FlhA to open the FlhA ion channel to conduct protons to drive flagellar protein export in a Δψ-dependent manner.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Bianca N. Quade ◽  
Mark D. Parker ◽  
Marion C. Hoepflinger ◽  
Shaunna Phipps ◽  
Mary A. Bisson ◽  
...  

AbstractCharaceae are closely related to the ancient algal ancestors of all land plants. The long characean cells display a pH banding pattern to facilitate inorganic carbon import in the acid zones for photosynthetic efficiency. The excess OH−, generated in the cytoplasm after CO2 is taken into the chloroplasts, is disposed of in the alkaline band. To identify the transporter responsible, we searched the Chara australis transcriptome for homologues of mouse Slc4a11, which functions as OH−/H+ transporter. We found a single Slc4-like sequence CL5060.2 (named CaSLOT). When CaSLOT was expressed in Xenopus oocytes, an increase in membrane conductance and hyperpolarization of resting potential difference (PD) was observed with external pH increase to 9.5. These features recall the behavior of Slc4a11 in oocytes and are consistent with the action of a pH-dependent OH−/H+ conductance. The large scatter in the data might reflect intrinsic variability of CaSLOT transporter activation, inefficient expression in the oocyte due to evolutionary distance between ancient algae and frogs, or absence of putative activating factor present in Chara cytoplasm. CaSLOT homologues were found in chlorophyte and charophyte algae, but surprisingly not in related charophytes Zygnematophyceae or Coleochaetophyceae.


1991 ◽  
Vol 261 (3) ◽  
pp. C521-C529 ◽  
Author(s):  
J. L. Hegarty ◽  
B. Zhang ◽  
T. L. Pannabecker ◽  
D. H. Petzel ◽  
M. D. Baustian ◽  
...  

The effects of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) and bumetanide (both 10(-4) M) on transepithelial Na+, K+, Cl-, and fluid secretion and on tubule electrophysiology were studied in isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti. Peritubular DBcAMP significantly increased Na+, Cl-, and fluid secretion but decreased K+ secretion. In DBcAMP-stimulated tubules, bumetanide caused Na+, Cl-, and fluid secretion to return to pre-cAMP control rates and K+ secretion to decrease further. Peritubular bumetanide significantly increased Na+ secretion and decreased K+ secretion so that Cl- and fluid secretion did not change. In bumetanide-treated tubules, the secretagogue effects of DBcAMP are blocked. In isolated Malpighian tubules perfused with symmetrical Ringer solution, DBcAMP significantly hyperpolarized the transepithelial voltage (VT) and depolarized the basolateral membrane voltage (Vbl) with no effect on apical membrane voltage (Va). Total transepithelial resistance (RT) and the fractional resistance of the basolateral membrane (fRbl) significantly decreased. Bumetanide also hyperpolarized VT and depolarized Vbl, however without significantly affecting RT and fRbl. Together these results suggest that, in addition to stimulating electroconductive transport, DBcAMP also activates a nonconductive bumetanide-sensitive transport system in Aedes Malpighian tubules.


Sign in / Sign up

Export Citation Format

Share Document