Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening

2022 ◽  
pp. 120247
Author(s):  
Hui Wen ◽  
Faizal Soyekwo ◽  
Changkun Liu
2020 ◽  
Author(s):  
Haiting Shi ◽  
Qin Liu ◽  
Wei Wang ◽  
Mingjing Shan ◽  
Kunyue Teng ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 332 ◽  
Author(s):  
Nur Diyana Suzaimi ◽  
Pei Sean Goh ◽  
Ahmad Fauzi Ismail ◽  
Stanley Chinedu Mamah ◽  
Nik Ahmad Nizam Nik Malek ◽  
...  

Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 404 ◽  
Author(s):  
Mehrdad Mohammadifakhr ◽  
Joris de Grooth ◽  
Hendrik D. W. Roesink ◽  
Antoine J. B. Kemperman

The use of forward osmosis (FO) for water purification purposes has gained extensive attention in recent years. In this review, we first discuss the advantages, challenges and various applications of FO, as well as the challenges in selecting the proper draw solution for FO, after which we focus on transport limitations in FO processes. Despite recent advances in membrane development for FO, there is still room for improvement of its selective layer and support. For many applications spiral wound membrane will not suffice. Furthermore, a defect-free selective layer is a prerequisite for FO membranes to ensure low solute passage, while a support with low internal concentration polarization is necessary for a high water flux. Due to challenges affiliated to interfacial polymerization (IP) on non-planar geometries, we discuss alternative approaches to IP to form the selective layer. We also explain that, when provided with a defect-free selective layer with good rejection, the membrane support has a dominant influence on the performance of an FO membrane, which can be estimated by the structural parameter (S). We emphasize the necessity of finding a new method to determine S, but also that predominantly the thickness of the support is the major parameter that needs to be optimized.


2014 ◽  
Vol 467 ◽  
pp. 188-194 ◽  
Author(s):  
Yue Cui ◽  
Qingchun Ge ◽  
Xiang-Yang Liu ◽  
Tai-Shung Chung

Desalination ◽  
2012 ◽  
Vol 287 ◽  
pp. 266-270 ◽  
Author(s):  
Changquan Qiu ◽  
Laurentia Setiawan ◽  
Rong Wang ◽  
Chuyang Y. Tang ◽  
Anthony G. Fane

2015 ◽  
Vol 72 (8) ◽  
pp. 1301-1307 ◽  
Author(s):  
Nguyen Cong Nguyen ◽  
Hau Thi Nguyen ◽  
Shiao-Shing Chen ◽  
Nhat Thien Nguyen ◽  
Chi-Wang Li

Forward osmosis (FO) is an emerging process for dewatering solid–liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO43−-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application.


2017 ◽  
Vol 327 ◽  
pp. 60-70 ◽  
Author(s):  
Changkun Liu ◽  
Xiaobin Lei ◽  
Lin Wang ◽  
Jizhen Jia ◽  
Xiaoyan Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document