Comparative study on the effect of Y content on grain refinement in the simulated coarse-grained heat-affected zone of X70 pipeline steels

Micron ◽  
2019 ◽  
Vol 127 ◽  
pp. 102758 ◽  
Author(s):  
Y.X. Cao ◽  
X.L. Wan ◽  
Y.H. Hou ◽  
Y. Liu ◽  
M.M. Song ◽  
...  
2014 ◽  
Vol 1078 ◽  
pp. 3-7
Author(s):  
Feng Zhou ◽  
Zhou Gao ◽  
Kai Ming Wu

The effect of large heat inputs (200 kJ/cm) on the microstructures and toughness of heat-affected zone of Nb microalloyed X70 pipeline steels were simulated utilizing Gleeble-3800. The microstructures were observed by optical microscope, scanning electron microscope and electron backscattered diffraction technique. Results showed that when the large heat input welding was applied, big austenite grains and coarse microstructures were formed in the coarse-grained heat-affected zone, and thus the toughness of the coarse-grained heat-affected zone was seriously reduced. With the increase of Nb content, the toughness of the CGHAZ did not change remarkably under the large heat input welding.


2018 ◽  
Vol 24 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Yu Liu ◽  
Xiangliang Wan ◽  
Guangqiang Li ◽  
Yong Wang ◽  
Wan Zheng ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 862
Author(s):  
Muneer Baig ◽  
Asiful H. Seikh ◽  
Ateekh Ur Rehman ◽  
Jabair A. Mohammed ◽  
Faraz Hussain Hashmi ◽  
...  

The temperature effects on the microstructural evolution of a coarse-grained Al5083 alloy during equal channel angular pressing (ECAP), were studied at ambient and high temperatures. The microstructural evaluation was done using an EBSD (electron backscattering diffraction) process. The grain refinement occurred as the number of passes increased, which had a positive effect on its strength. Additionally, increasing the pressing temperature leads to a decrease in the new grain’s formation and an increase in the normal grain size in the third pass. This can be ascribed to the unwinding of strain similarity between the grains because of the continuous activity of dynamic recuperation and the grain limit sliding occurring at a higher temperature. The attainment of grain refinement is examined exhaustively in this study.


Metallurgist ◽  
2021 ◽  
Vol 64 (9-10) ◽  
pp. 875-884
Author(s):  
K. G. Vorkachev ◽  
P. P. Stepanov ◽  
L. I. Éfron ◽  
M. M. Kantor ◽  
A. V. Chastukhin ◽  
...  

2015 ◽  
Vol 1114 ◽  
pp. 3-8
Author(s):  
Nicolae Şerban ◽  
Doina Răducanu ◽  
Nicolae Ghiban ◽  
Vasile Dănuţ Cojocaru

The properties of ultra-fine grained materials are superior to those of corresponding conventional coarse grained materials, being significantly improved as a result of grain refinement. Equal channel angular pressing (ECAP) is an efficient method for modifying the microstructure by refining grain size via severe plastic deformation (SPD) in producing ultra-fine grained materials (UFG) and nanomaterials (NM). The grain sizes produced by ECAP processing are typically in the submicrometer range and this leads to high strength at ambient temperatures. ECAP is performed by pressing test samples through a die containing two channels, equal in cross-section and intersecting at a certain angle. The billet experiences simple shear deformation at the intersection, without any precipitous change in the cross-section area because the die prevents lateral expansion and therefore the billet can be pressed more than once and it can be rotated around its pressing axis during subsequent passes. After ECAP significant grain refinement occurs together with dislocation strengthening, resulting in a considerable enhancement in the strength of the alloys. A commercial AlMgSi alloy (AA6063) was investigated in this study. The specimens were processed for a number of passes up to nine, using a die channel angle of 110°, applying the ECAP route BC. After ECAP, samples were cut from each specimen and prepared for metallographic analysis. The microstructure of the ECAP-ed and as-received material was investigated using optical (OLYMPUS – BX60M) and SEM microscopy (TESCAN VEGA II – XMU). It was determined that for the as-received material the microstructure shows a rough appearance, with large grains of dendritic or seaweed aspect and with a secondary phase at grain boundaries (continuous casting structure). For the ECAP processed samples, the microstructure shows a finished aspect, with refined, elongated grains, also with crumbled and uniformly distributed second phase particles after a typical ECAP texture.


2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2015 ◽  
Vol 55 (9) ◽  
pp. 2018-2026 ◽  
Author(s):  
Takako Yamashita ◽  
Junji Shimamura ◽  
Kenji Oi ◽  
Masayasu Nagoshi ◽  
Katsunari Oikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document